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EXECUTIVE SUMMARY

Four-lane undivided roadways in urban areas can experience a degradation of service and/or
safety as traffic volumes increase. In fact, the existence of turning vehicles on this type of
roadway has a dramatic effect on both of these factors. The solution identified for these problems
istypically the addition of araised median or two-way left-turn lane (TWLTL). The mobility and
safety benefits of these actions have been proven and are discussed in the “ Past Research”
chapter of this report along with some general cross section selection guidelines. The cost and

right-of-way impacts of these actions are widely accepted.

These guidelines focus on the evaluation and analysis of an dternative to the typical four-lane
undivided cross section improvement approach described above. It has been found that the
conversion of afour-lane undivided cross section to three lanes (i.e., one lane in each direction and
aTWLTL) can improve safety and maintain an acceptable level of service. These guidelines
summarize the results of past research in this area (which is amost nonexistent) and
qualitative/quantitative before-and-after safety and operational impacts of case study conversions
located throughout the United States and lowa. Past research confirms that this type of conversion
is acceptable or feasible in some situations but for the most part fails to specifically identify those
situations. In generd, the reviewed case study conversions resulted in areduction of average or 85th
percentile speeds (typically less than five miles per hour) and arelatively dramatic reductionin
excessive speeding (a60 to 70 percent reduction in the number of vehiclestraveling five miles per
hour faster than the posted speed limit was measured in two cases) and total crashes (reductions
between 17 to 62 percent were measured). The 13 roadway conversions considered had average
daily traffic volumes of 8,400 to 14,000 vehicles per day (vpd) in lowaand 9,200 to 24,000 vehicles
per day elsewhere.

In addition to past research and case study results, a simulation sensitivity analysis was completed
to investigate and/or confirm the operational impacts of afour-lane undivided to three-lane
conversion. Firgt, the advantages and disadvantages of different corridor simulation packages were
identified for this type of analysis. Then, the CORridor SIMulation (CORSIM) software was used



to investigate and eva uate severa characteristics related to the operational feasibility of afour-lane
undivided to three-lane conversion. Simulated speed and level of service resultsfor both cross
sections were documented for different total peak-hour traffic, access densities, and access-point
left-turn volumes (for a case study corridor defined by the researchers). These anayses assisted with
the identification of the considerations for the operational feasibility determination of afour-laneto

three-lane conversion.

The results of the simulation analyses primarily confirmed the case study impacts. The CORSIM
resultsindicated only adight decrease in average arterial speed for through vehicles can be
expected for alarge range of peak-hour volumes, access densities, and access-point |eft-turn
volumes (given the assumptions and design of the corridor case study evaluated). Typicdly, the
reduction in the smulated average arterial speed (which includes both segment and signal delay)
was between zero and four miles per hour when aroadway was converted from afour-lane
undivided to athree-lane cross section. The simulated arterial level of service for aconverted
roadway, however, showed a decrease when the bi-directional peak-hour volume was about 1,750
vehicles per hour (or 17,500 vehicles per day if 10 percent of the daily volumeis assumed to occur
in the peak hour). Past research by others, however, indicates that 12,000 vehicles per day may be
the operational capacity (i.e., level of service E) of athree-lane roadway due to vehicle platooning.

The simulation results, along with past research and case study results, appear to support following
volume-related feasibility suggestions for four-lane undivided to three-lane cross section
conversions. It isrecommended that afour-lane undivided to three-lane conversion be considered
as afeasible (with respect to volume only) option when bi-directional peak-hour volumes are less
than 1,500 vehicles per hour, but that some caution begin to be exercised when the roadway has a
bi-directiona peak-hour volume between 1,500 and 1,750 vehicles per hour. At and above 1,750
vehicles per hour, the simulation indicated areduction in arterial level of service. Therefore, at least
in lowa, the feasibility of afour-lane undivided to three-lane conversion should be questioned
and/or considered much more closely when aroadway has (or is expected to have) a peak-hour
volume of more than 1,750 vehicles. Assuming that 10 percent of the daily traffic occurs during the
peak-hour, these volume recommendations would correspond to 15,000 and 17,500 vehicles per

day, respectively. These suggestions, however, are based on the results from one idedlized case

X



study corridor anaysis. Individual operational analysis and/or simulations should be completed in
detail once afour-lane undivided to three-lane cross section conversion is considered feasible
(based on the genera suggestions above) for a particular corridor. All of the s mulations completed
as part of this project also incorporated the optimization of signal timing to minimize vehicle delay

along the corridor.

A number of determination feasibility factors wereidentified from areview of the past research,
before-and-after case study results, and the smulation sensitivity analysis. The existing and
expected (i.e., design period) statuses of these factors are described and should be considered. The
characteristics of these factors should be compared to each other, the impacts of other potentidly
feasible cross section improvements, and the goal s/objectives of the community. The factors

discussed in these guidelines include

« roadway function and environment
« overall traffic volume and level of service
« turning volumes and patterns
» frequent-stop and slow-moving vehicles
» weaving, speed, and queues
« crashtype and patterns
» pedestrian and bike activity
« right-of-way availability, cost, and acquisition impacts
» genera characteristics, including
- parallel roadways
- offset minor street intersections
- pardle parking
- corner radii

- a-graderailroad crossings

xi



The characteristics of these factors are documented in these guidelines, and their relationship to
four-lane undivided to three-lane cross section conversion feasibility identified. This information

is summarized along with some evaluative questions in this executive summary and Appendix C.

In summary, the results of past research, numerous case studies, and the simulation analyses done
as part of this project support the conclusion that in certain circumstances a four-lane undivided
to three-lane conversion can be afeasible alternative for the mitigation of operational and/or
safety concerns. This feasibility, however, must be determined by an evaluation of the factors
identified in these guidelines (along with any others that may be relevant for aindividual
corridor). The expected benefits, costs, and overall impacts of afour-lane undivided to three-lane
conversion should then be compared to the impacts of other feasible aternatives (e.g., adding a
raised median) at a particular location.

Xii
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Table ES.1 Feasibility Deter mination Factor Characteristics and Sample Evaluative Questions

Factor Characteristics Sample Evaluative Questions
Roadway Function and o Actual, Expected, and Desired Primary Function (Access, »  What isthe primary current, expected, and desired
Environment Mobility, or a Combination of the Two) function of the roadway?

Community Objectives/Goals for the Roadway
Available Right-of-Way
Current and Expected Adjacent Land Use

Isthe roadway primarily a collector or minor arterial
roadway?

Does the current roadway primarily operate as a
“defacto” three-lane cross section?

Isthe goal for the roadway improvement increased
safety with somewhat lower mobility?

Isthe right-of-way limited?

Will the adjacent land use remain relatively stable
throughout the design period?

Will the proposed cross section match the desired
function of the roadway?

Will the answers to the above questions remain the same
throughout the design period of the project?

Overall Traffic Volume and
Level of Service

Total Daily Volume

Peak-Hour Volume (Morning/Noon/Evening)
Directional Split

Intersection and Arterial Level of Service

Side Street and Driveway Vehicle Delay

Volume of Frequent-Stop and/or Slow-Moving Vehicles
Signal Timing/Phasing

Arteria Travel Speedsand Vehicle Delays

Existence of Turn Lanes

What is an acceptable increase in minor street or signal -
related delay due to the conversion?
Isadecreasein arterial travel speed of 5 miles per hour
or less acceptable?
What is an acceptable reduction in intersection level of
service?
What level of daily traffic volume exists (for lowa
roadways and assuming a 50/50 split and 10 percent of
daily volume occurs during peak-hour):

< 15,000 vpd (feasibility probable)

15,000 to 17,500 vpd (exercise caution)

> 17,500 vpd (feasibility lesslikely)
Does the signal timing/phasing need to be changed?
Does the current roadway primarily operate as a
“defacto” three-lane cross section?
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TableES.1 Continued

Turning Volumes and
Patterns

Number and L ocation of Turn Volumes and Access Points
Peak time period of Turn Volumes

Existence of Left-Turn and Right-Turn Lanes

Design of Access Points and I ntersections

Turn Volume of Frequent-Stop and/or Slow-Moving Vehicles
Minor Street and Access Point Vehicle Delay

Signal Timing/Phasing

Does the signal timing/phasing need to
changes/optimized?

How important isit that right-turn vehicles quickly
enter/exit the roadway?

Do the access point and intersections need to be
redesigned (e.g., radii, approach slopes, location)?
Are right-turn lanes needed at particular locations?
Does the proposed marking allow the design vehicle
(e.g., tractor-trailer) to turn properly?

What is an acceptable increase in minor street and/or
left-turn vehicle delay?

Does the current roadway primarily operate as a
“defacto” three-lane cross section?

Frequent-Stop and/or Slow-
Moving Vehicles (e.g.,
agricultural vehicles, mail
carriers, school buses, tractor-
trailers, and buggies)

Volume, Location, and Time of Frequent-Stop and/or Slow-
Moving Vehicles

Type, Design (Length, Width, Turning Radius, etc.) and Speed
of Vehicles

Arterial Travel Speedsand Vehicle Delays

Level of Enforcement for Proper TWLTL Use (i.e., No Passing
Allowed)

What is acceptable delay with respect to frequent-stop or
slow-moving vehicles?

Can these vehicles turn properly at the access points and
intersections?

Can no passing of these vehicles be enforced?

Are there locations for pull-outs for these vehicles?

Can some or all of the stop locations for the frequent-
stop vehicles be combined?
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TableES.1 Continued

Weaving, Speed, and Queues

Signal Timing/Phasing

Number of Existing Lane Changes

Turn Volume and Location

Arterial Travel Speedsand Vehicle Delays

Level of Enforcement for Proper TWLTL Use (i.e., No Passing
Allowed)

Number and Location of Turn Volumes and Access Points
Peak Time Period of Turn Volumes

Existence of Left-Turn and Right-Turn Lanes

Design of Access Points and I ntersections

Turn Volume of Frequent-Stop and/or Slow-Moving Vehicles
Minor Street and Access Point Vehicle Delay

Queue Length

Number of Speeders (i.e., greater than 5 mph over the posted
speed limit)

Does the signal timing/phasing need to
changes/optimized?

How important isit that right-turn vehicles quickly
enter/exit the roadway?

Do the access point and intersections need to be
redesigned (e.g., radii, approach slopes, location)?
Are right-turn lanes needed at particular locations?
What is an acceptable increase in minor street and/or
left-turn vehicle delay?

Isadecreasein arterial travel speed of 5 miles per hour
or less acceptable?

What is an acceptable change in queues?

Are there safety concerns related to weaving?

Can no passing be enforced?

Can drivers be educated about proper use of TWLTL?
Isareduction in speeders and speed variability
preferred?

Can al the old markings be completely removed?
Does the current roadway primarily operate as a
“defacto” three-lane cross section?

Crash Types and Patterns

Type of Crashes

Location of Crashes

Number and L ocation of Pedestrians and Bicyclists
Parallel Parking Need

Can the crashes that are occurring be reduced with a
conversion?

Will areduction in speed and speed variability increase
safety?

Are there safety concerns related to parallel parking
maneuvers?

Do pedestrians and bicyclists have safety concerns?

Pedestrian and Bike Activity

Number and Location of Pedestrians

Number and Location of Bicyclist Use

Characteristics of Pedestrians and Bicyclists (e.g., Age)
Bike and Pedestrian Friendliness of Roadway

Cross Section Width

Parallel Parking Need

What is the pedestrian and bicyclist friendliness of the
roadway?

Do pedestrians and bicyclists have safety concerns?
Will the addition of a TWLTL assist pedestrians and
bicyclists?

How will pedestrians and bicyclists interact with parallel
parking?

Can a bike lane be added after the conversion?
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TableES.1 Continued

Right-of-Way Availability,
Cost, and Acquisition Impacts

Available Right-of-Way

Cost of Right-of-Way

Existence of Left-Turn and Right-Turn Lanes

Design of Access Points and I ntersections

Number of Properties Needed and Environmental Impacts (e.g.,
Tree Removal)

Cross Section Width

Parallel Parking Need

Isthe right-of-way limited?

Will the cost of right-of-way acquisition be significant?
Do the access point and intersections need to be
redesigned (e.g., radii, approach slopes, location)?

Are right-turn lanes needed at particular locations?
What is necessary in the cross section (e.g., bike lane,
parallel parking)?

General Characteristics

Parallel Roadways

Roadway Network Layout
Volume and Characteristics of Through Vehicles Diverted
Impact of Diversion on Parallel Roadways

Isadecreasein arterial travel speed of 5 miles per hour
or less acceptable?

Does the signal timing/phasing need to
changes/optimized?

Will conversion divert through vehicles to parallel
roadways?

Isit possible to avoid or reroute the diverted traffic?
What is the impact on the parallel roadway environment?

Offset Minor Street

Volume and Time of Left Turns

Do left turns occur into both minor street/access point

Intersections Queue Lengths approaches at a similar time?
Distance between Minor Street Approaches Are the left-turn volumes significant?
Will the left-turn volumes produce queues in the through
lanes of a three-lane roadway?
Parallel Parking Parallel Parking Need Does parallel parking exist?

Number of Parking Maneuvers
Operational and Safety | mpacts of Parallel Parking
Design of Existing/Proposed Parallel Parking

How many parking maneuvers occur during peak travel
times?

What are the safety and delay concerns related to parallel
parking maneuvers?

Isit possible to design these spaces for easy enter/exit
(i.e., to minimize delay)?

Will it be necessary to reduce the number of parking
spaces?

Does parallel parking reduce the ability of vehiclesto
turn in and out of minor streets and access points?
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TableES.1 Continued

Corner Radii

Design of Access Points and | ntersections

Number and Location of Turn Volumes and Access Points
Peak time period of Turn Volumes

Existence of Left-Turn and Right-Turn Lanes

Turn Volume of Frequent-Stop and/or Slow-Moving Vehicles
Minor Street and Access Point Vehicle Delay

How important is it that right-turn vehicles quickly
enter/exit the roadway ?

Do the access point and intersections need to be
redesigned (e.g., radii, approach slopes, location)?

Are right-turn lanes needed at particular locations?
Does the proposed marking allow the design vehicle
(e.g., tractor-trailer) to turn properly?

Do parallel parking spaces need to be removed to allow
proper turning?

At-Grade Railroad
Crossing

Volume, Location, and Time of Train Crossing
Length of Crossing Train

Delay Impacts of Train Crossing

Queue Impacts of Train Crossing

Total Daily Vehicle Volume

Peak-Hour Vehicle Volume (Morning/Noon/Evening)
Directional Split of Vehicles

Do trains cross during peak travel periods? What is the
typical delay from train crossing?

Is double the current queue length (with four-lane
undivided cross section) at arailroad at-grade crossing
acceptable?

Would the delay impacts of double the current queue be
acceptable?




INTRODUCTION

There are alarge number of four-lane undivided roadways in the urban areas of 1owa and the
United States. Many of these roadways operate at acceptable levels of service and safety. In other
cases, however, changes in volume levels, traffic flow characteristics (e.g., excessive speed),
and/or the corridor environment have changed the service and/or safety of the roadway to such an

extent that concerns develop and a cross section improvement appears to be necessary.

Improvements to the cross section of an urban four-lane undivided roadway are often limited to
aternatives that increase its existing curb-to-curb width. For example, atypical recommendation
to improve the operation and/or safety of an urban four-lane undivided roadway is the addition of
araised median or two-way-left-turn-lane (TWLTL). A schematic of this approach is shown in
Figure 1. The safety and operational benefits of this type of improvement are generally accepted
and are discussed in this report.

More recently, an alternative to widening the cross section of an urban four-lane undivided
roadway has been considered in lowa and throughout the United States. In certain situations, it
has been shown that the conversion of an urban four-lane undivided roadway to athree-lane
cross section (i.e., one lane in each direction and a TWLTL) can have lower overall impacts than
awidening option, be completed for arelatively low cost, and result in acceptable operations and
improved safety. A schematic of this approach is shown in Figure 2. However, unlike the
addition of araised median or TWLTL, thereislittle guidance available to determine the
locations where a conversion of thistype (see Figure 2) might be feasible and/or successful. This
report provides some qualitative and quantitative guidelines related to the feasibility of four-lane

to three-lane conversions and their expected impacts.

Figure1l Four-LaneUndivided Roadway Conversion to a Divided Cross Section
1



Figure2 Four-LaneUndivided Roadway Conversion to a Three-Lane Cross Section

Project Purpose and Scope

The purpose of this project was to investigate the impacts and factors related to the feasibility of
urban four-lane undivided to three-lane cross section conversions. Past research and case study
experiences (in lowa and the United States) are documented, and factors related to the feasibility
of converting afour-lane undivided roadway to athree-lane cross section (see Figure 2) are also
identified and discussed. Some of the guidelines provided for these factors are qualitativein
nature, but others are more quantitative. For example, asensitivity analysis of smulated traffic
flow along a case study roadway was completed to evaluate and document the expected
operational impacts (i.e., speed and level of service [LOS]) of an urban four-lane to three-lane

conversion. The results from this sensitivity analysis are included in this report.

The focus of thisreport is limited to the discussion of one possible mitigation measure (i.e., a
three-lane cross section) for urban four-lane undivided roadways being considered for a cross
section improvement. In other words, the operation and/or safety conditions along a particular
urban four-lane undivided roadway have degraded enough that several different cross section
improvements are being evaluated. This report provides guidelines to assist transportation
professionals in their consideration of the four-lane undivided to three-lane conversion
aternative. Factors that should be considered for conversion feasibility are identified and their
characteristics discussed. If it is determined that thistype of conversion isfeasible for a particular

location, a more detailed engineering alternative analysis would need to be compl eted.

Objectives
The primary objective of this research project was to develop a set of guidelinesto assist in the
selection of candidate roadways for urban four-lane undivided to three-lane cross section
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conversions. The authors evaluated and assessed the physical, operational, and safety
characteristics that appear to be compatible with the consideration and/or feasibility of thistype
of conversion. These characteristics were evaluated qualitatively, with simulation software, and
through an interpretation of subjective and objective before-and-after study results from four-lane
undivided to three-lane conversions throughout the United States and lowa. Some of the
roadway characteristics investigated include roadway function and environment, overall traffic
volume and LOS, turning volumes and patterns, weaving/ speed/queues, crash types and patterns,
pedestrian and bicycle activity, right-of-way availability/cost/acquisition, and several other
general characteristics (e.g., parallel parking).

Report Organization

There are several subjects discussed in thisreport. First, the results of past research and the safety
and operational benefits of TWLTLSs or raised medians are discussed. A suggested approach to
the selection of cross section improvementsis also presented. Then, the results from several case
study conversions (within the United States and lowa) are described, and the output of atraffic
flow sengitivity analysis presented. Based on this information, a number of feasibility
determination factors are identified and discussed. The authors believe that these factors should
be investigated and evaluated before an urban four-lane undivided to three-lane cross section
conversion can be considered a feasible improvement alternative. The feasibility determination

factors discussed in this report include

« roadway function and environment

« overdl traffic volume and LOS

 turning volumes and patterns

» frequent-stop and/or slow-moving vehicles

» weaving, speed, and queues

« crashtypes and patterns

» pedestrian and bicycle activity

« right-of-way availability, cost, and acquisition impacts

» genera characteristics, including



- paralle roadways

- offset minor street intersections
- parale parking

- corner radii

- a-graderailroad crossings

A discussion of these factors, their characteristics, and the qualitative and/or quantitative changes
they may experience due to an urban four-lane undivided to three-lane conversion are
documented. The last chapter of this report is a summary of the conclusions and
recommendations from this research. The results from a Sioux Center resident survey, the
simulation analyses, and a checklist of the feasibility determination factor are included in the
appendices.

Unlike many past efforts, these guidelines do include a discussion of the simulation sensitivity
analysis done as part of research to investigate the operational impacts of an urban four-lane
undivided to three-lane conversion. Simulation software was applied to a case study corridor to
determine the changes in average arteria travel speed and LOS (arterial and signalized
intersection) for different combinations of total volume, access point left-turn volumes, and
access density. The objectives of this simulation sensitivity analysis were to evaluate the impact
of afour-lane undivided to three-lane conversion on roadway operation, and attempt to identify
the combinations of total peak-hour volume, access point left-turn volume, and access point
density that define the operational feasibility of thistype of conversion. The results of these

simulation sensitivity analyses are presented, evaluated, and described in this report.



PAST RESEARCH

There has been little formal research into the traffic flow or safety impacts of urban four-lane
undivided to three-lane cross section conversions. In fact, many of the recommendations related
to this type of conversion have been qualitative in nature. For example, in National Cooperative
Highway Research Program (NCHRP) Report 282 Harwood suggests that “[i]n some situations,
with high left-turn volumes and relatively low through volumes, restriping of afour-lane
undivided (4U) facility as a[three-lane] facility may promote safety without sacrificing
operational efficiency” (1). The oppositeistrue, however, with respect to the safety and
operational impacts of addinga TWLTL or raised median to a previoudy undivided two- or four-
lane roadway. Past research about all three subjects is discussed in the following paragraphs.

Conversion of Four-Lane Undivided Roadwaysto a Three-Lane Cross Section

Two studies that evaluated the impacts of converting urban four -lane undivided roadwaysto a
three-lane cross section were referenced by Harwood in NCHRP Reports 282 and 330 (1, 2). The
results from one of these studies were published and are discussed in the following paragraph.
The unpublished material, on the other hand, documented the analysis of a converted roadway in
Billings, Montana. Its contents are discussed in the next chapter of this report with the other

before-and-after case study results.

In the late 1970s, Nemeth completed a research study about TWLTLs and their implementation
(3). As part of this study several before-and-after field studies of different cross section
conversions were done. At one field study location a roadway within acommercial areawith an
average daily traffic (ADT) of approximately 16,000 vehicles per day (vpd) was converted from a
four-lane undivided to athree-lane cross section. Nemeth concluded that the reduction in through
lanes increased delay, but that the access function of the roadway was improved. Overall, the
average speed in both directions decreased by approximately seven miles per hour (mph) while
traffic increased by about seven percent (3). It was also observed that traffic congestion and
gueuing during the peak periods was significant enough that some drivers used the TWLTL asa
passing lane (3). In addition, the conversion reduced brake applications by about 22 percent but

appeared to increase weaving (3). The weaving issue, however, was the result of some nonuse or
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misuse of the TWLTL, and some of this problem was eventually corrected by the proper removal
of the old centerline (3). The use of TWLTLswas also still relatively new in the 1970s. It is

expected that the issue of nonuse or misuse of these facilitiesis less of a problem now.

In the past, there has also been at least one suggestion about the ADT volumes that are most
appropriate for athree-lane cross section (4). In their study of the operational and safety impacts
of TWLTLs, Walton et al. referenced a set of guidelines that suggested a 5,000 to 12,000 ADT
range was appropriate for three-lane roadways (4). However, this suggestion appears to be based
on what was considered acceptable for new construction rather than for an urban four-lane
undivided to three-lane conversion. The case study anadyses and anecdotal information discussed
in the next chapter of this report show that there have been successful conversions of urban four-
lane undivided roadways to three-lane cross sections with daly traffic volumes much higher than

the range suggested.

Recently, Hummer and Lewis of North Carolina State University also produced areport that
compared the safety of two-lane undivided, three-lane, and four-lane undivided roadways (5).
Their safety dataindicated that three-lane roadways had lower crash rates than four-lane
undivided roadways in the medium and high-density residential and commercia land use areas
(5). In addition, unlike the two-lane and four-lane undivided roadways, the crash rates of the

three-lane roadways did not seem to increase with development density.

In addition to a safety comparison, Hummer and Lewis also calculated the “ operational capacity”
(i.e., the traffic flow at which the roadway segment goes from LOS D to E) of two-lane
undivided, three-lane, and four-lane undivided roadways (5). The roadway segment (i.e., between
signals) levels of service reported by Hummer and Lewis were based on the traffic flow data
collected, athrough-vehicle delay model, and a dlightly adjusted version of the commonly
accepted approach to determining LOS (5).

The LOS for three-lane and four-lane undivided roadways were determined to be about the same
until an ADT of 15,000 to 20,000 vpd (based on 10 percent of this ADT occurring during the

peak hour) (5). The difference in roadway segment LOS, however, became especially obvious at
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20,000 vpd as driveway density increased (5). Based on through-vehicle delay, aroadway
segment LOS E (and using the researchers approach) occurred for three-lane roadways when
volume and driveway densities were very high (i.e., 20,000 vpd and 30 or 40 access points per
mile per side), but the four-lane undivided roadways considered were never predicted to
experience lower than aLOS C for the inputs considered (5). The researchers concluded,
however, that LOS E (i.e., the operational capacity) along a three-lane roadway would be reached
at alower ADT of 12,000 vpd due to platooning (i.e., alevel, 100 percent no-passing, two-lane
rural roadway with a volume to capacity ratio of 0.57) rather than through-vehicle delay. Based
on this definition of platooning, the operational capacity of four-lane undivided roadway
segments was determined to be about 27,000 vpd.

The research documented in this report focused on the use of three-lane roadways in urban areas
that may not have mobility as their primary function. The acceptable volume to capacity ratio
(i.e., the platooning operational capacity) for this type of roadway may be much higher than 0.57

assumed in Hummer and Lewis' s research.

Safety Benefits of TWLTLsand Raised Medians

Most of the research related to the selection of aroadway cross section or left-turn treatment
(e.g., raised median or TWLTL) has focused on the impacts of their addition to an existing cross
section. Several investigators have summarized the research done on this subject, and/or model ed
the expected safety benefits of TWLTLs and raised medians (1, 2, 6, 7).

In the mid-1980s Harwood investigated the safety impacts of several cross section improvements
to suburban highways (1). He found that the addition of a TWLTL to atwo-lane undivided
roadway could be expected to decrease overall crash rates by 11 to 35 percent (1). On average, he
also found that crash rates decreased 19 to 35 percent when a TWLTL was added to a suburban
four-lane undivided roadway. For urban four-lane undivided streets, however, the addition of a
TWLTL (even when the roadway lanes were narrowed) reduced total crashes by approximately
44 percent, but the data varied substantially (2). The conversion of an urban two-lane undivided
cross section to four lanes, on the other hand, typically produced a substantial increase in total

crashes (2). Overall, angle, sideswipe, rear-end, and head-on crash rates are also typically

7



reduced the most by the addition of a TWLTL. The results of the previously described Hummer
and Lewis research confirm the safety benefits of aTWLTL (5).

Two reports recently released by the NCHRP also address the safety benefits of TWLTLs and
raised medians (6, 7). In NCHRP Report 395, Bonneson and McCoy model annual crash
frequency for undivided roadways and also those with araised-curb median or TWLTL (6). They
found a significant correlation between annual crash frequency and ADT, driveway density, the
density of unsignalized public street approaches, |eft-turn treatment or median type, and adjacent
land use (6). It can be expected that crashes will be more frequent along roadways with higher
daily traffic demands, higher driveway and public street densities, and adjacent business and
office land uses (versus residential and industrial land uses) (6). In business and office areas, the
model predicts that undivided roadways with parallel parking will have more crashes than cross
sectionswith a TWLTL or raised median. When the parking is removed, however, the crash rate
difference between undivided roadways and roadways with a TWLTL isrelatively small (6). This
similarity in crash rates was also found for residential and industrial areas, but only for an ADT
less than 25,000 vpd (6). Above 25,000 vpd, undivided roadways (with or without parking) were
predicted to have more crashes (6). In most cases, the model predicts the fewest crashes along
roadways with araised median (6).

NCHRP Report 395, along with NCHRP Report 420, also summarized the results of past crash
prediction models (6, 7). Most of these models produce similar results. For example, roadways
with an undivided cross section are expected to have the highest crash rates (6, 7). In addition,
roadways with TWLTLSs are predicted to have alower crash rate than undivided roadways, and a
higher rate than those roadways with araised median (7). Harwood’ s model is an exception. It
predicts the lowest crash rates on roadways with a TWLTL rather than roadways with a raised
median (1, 7). A summary of the results produced by past crash models (with the exception of
Harwood' s) are shown in Table 1 (6, 7). Some of the crash reductions shown in the table are

quite large.



Tablel Average Annual Crashes per Mile Predicted by Various M odels (6, 7)

Average Daily Undivided Cross Cross Section with Cross Section with
Traffic Section TWLTL Raised Median
10,000 48 39 32
20,000 126 60 55
30,000 190 92 78
40,000 253 112 85

Operational Benefits of TWLTLsand Raised Medians

Many of the studies previously described have also modeled and/or summarized the operational
benefits of TWLTLs and raised medians. For example, Harwood concluded that areduction in
through vehicle delay results from the addition of a TWLTL to a previoudy undivided roadway
(). Harwood found that the through vehicle delay reduction was primarily due to the removal of
left-turn vehicles from the through lanes of the roadway (1). More specificaly, it was shown that
the delay reduction per left-turn vehicle increased as total hourly volumes increased but
decreased as the number of driveways per mile decreased (1). The recent research by Hummer
and Lewisinto the operational capacity of roadways with TWLTLSs generally supports these
conclusions, and previous work by Harwood and St. John aso found that the left-turn vehicle
delay reduction effectiveness of TWLTLs was correlated to left-turn volume, through volume,
opposing volume, and percent platooned traffic in the opposing direction (5, 8). Opposing
volume, however, had the strongest relationship with delay reduction per left-turn vehicle (8).

NCHRP Reports 395 and 420 have also quantified or discussed the operational impacts of a
raised median or TWLTL (6, 7). In NCHRP Report 395, Bonneson and McCoy studied and
modeled the through and | eft-turn vehicle delay expected for undivided and divided (i.e.,

TWLTL and raised-curb median) roadways (6). One model describes average through delay per
roadway approach as a function of left-turn and right-turn volumes per access point, total volume
in subject direction, opposing through-lane flow rate, number of through lanes, and type of
median treatment (e.g., undivided, TWLTL, or raised-curb) (6). Average total left-turn delay per
approach, on the other hand, was related to opposing volume, average left-turn volume per access

point, and number of through lanes (6). The models produced by Bonneson and McCoy have
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been described as*“. . . asound basis for assessing the through and | eft-turn approach delays
associated with various median alternatives’ (7). In fact, Hummer and Lewis used a combination

of North Carolina data and a Bonneson model to estimate vehicle delay (5).

Tables were provided in NCHRP Report 395 that indicated the through, major street left-turn,
and annual delays for different left-turn treatments (6). Table 2 is part of the annual delay tables
for the different left-turn treatments (6, 7). These tables were also summarized in NCHRP Report
420 (6, 7). As expected, delays generally increase with higher ADT, percent major-street |eft
turns, and access point density. Delays are also typically larger for undivided roadways versus
those with a TWLTL or raised median.

NCHRP Report 420 also summarized the simulation and regression models developed (since
1982) for the operational analysis of median alternatives (7). In general, these models produce
results similar to the Bonneson and McCoy models. For example, lower delays are expected on
roadways with TWLTLSs or nontraversable medians versus undivided roadways (7). In high-
volume situations, however, roadways with TWLTLs are typically expected to have lower delays
than roadways with raised medians (7). This appears to be the result of modeled left-turn lane
blockages, and the additional travel that may be necessary for traffic that would like to turn left at
locations no longer provided a median opening (7). Usually, the modeled differencesin delay
along high-volume roadways with TWLTLs and raised medians are not significant (7).

Table2 Annual Delay to Major-Street Left-Turn and Through Vehicles (6, 7)*

Undivided Cross Section Cross Section with TWLTL Cross Section with Raised
Access M edian

Points/Mile 10 Per cent 15 Per cent 10 Per cent 15 Per cent 10 Per cent 15 Per cent
Left Turns Left Turns Left Turns Left Turns Left Turns Left Turns
Aver age Daily Traffic = 22,500
30 2,200 2,900 1,300 1,700 1,300 1,700
60 2,200 3,000 1,400 1,800 1,400 1,800
90 2,200 3,000 1,400 1,800 1,400 1,800
Aver age Daily Traffic = 32,500
30 7,100 9,100 3,000 4,000 3,100 4,000
60 7,800 10,200 3,200 4,200 3,500 4,800
90 8,000 10,800 3,200 4,200 3,400 4,700

*Delay isin seconds per vehicle per approach, and percent left-turnsis for one direction of travel and a 1,320-foot
roadway segment. Table isfor four through lanes (both directions).
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Cross Section Selection Guidelines

All of the information discussed in the previous paragraphsis only useful if transportation
professional s evaluating cross section design alternatives take it into account. In 1990, Harwood
suggested the following eight-step process for the selection of cross section design alternatives
(for an existing curb-to-curb width) on urban arterial roadways (2):

Step 1. Determine existing conditions

Step2.  Determine projected future conditions

Step 3. Identify constraints

Step4.  ldentify feasible design alternatives

Step 5. Eliminate aternatives that do not address existing problems
Step 6.  Examine possible geometric variations

Step7.  Determine benefits and disbenefits

Step 8.  Select the preferred improvement strategy

This document discusses the factors that determine whether or not a three-lane cross section
could be afeasible design alternative to improve the operations and/or safety of an existing urban
four-lane undivided roadway (i.e., steps 4 and 5 above). These discussions should also help
transportation professionals determine how some of these factors might change with the subject

conversion (i.e., step 7 above).

The selection of an appropriate cross section design alternative is complex process, especidly in
urban areas. In NCHRP Report 282 and NCHRP Report 330, Harwood discussed the many
advantages and disadvantages of different urban and suburban roadway cross sections (1, 2). In
addition, Bonneson and M cCoy have created tables to help transportation professionals with the
proper selection of appropriate left-turn treatments (i.e., undivided, TWLTL, or araised median).
These tables are based on a benefit-cost analysis, and they suggest different left-turn treatments
(i.e., conversions) for different combinations of total through lanes, ADT, access point density,
land use (i.e., commercia and business or industrial and residential), and percent left-turns per
1,320 foot roadway segment (6). The results from NCHRP Report 395 and other past research
reports are summarized in NCHRP Report 420 and recreated in Table 3 (6, 7). Based on the
findings and opinions expressed in the source research documents, the table identifies the

“preferred” |eft-turn treatment for specific conversion alternatives and factors (6, 7).
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Table3 Comparison of Left-Turn Treatment Types (Adapted from 6, 7)

“Preferred” Midblock L eft-Turn Treatment*
Comparison Factor Raised M edian Raised M edian TWLTL vs.
vs. TWLTL vs. Undivided Undivided
Operational Effects
Major —Street Through Movement Delay n.d. Raised Median TWLTL
Magjor-Street L eft-Turn Movement Delay n.d. Raised Median TWLTL
Minor-Street Left & Through Delay (Two Stage Entry) n.d. Raised Median TWLTL
Pedestrian Refuge Area Raised Median Raised Median n.d.
Operational Flexibility TWLTL Undivided n.d.
Safety Effects
V ehicle Crash Frequency Raised Median Raised Median TWLTL
Pedestrian Crash Frequency Raised Median Raised Median n.d.
Turning Driver Misuse/Misunderstanding of Markings Raised Median Raised Median Undivided
Design Variations Can Minimize Conflicts (e.g., Raised Median Raised Median TWLTL
isands)
Positive Guidance (communication to motorist) Raised Median Raised Median n.d.
Access Effects
Cost of Access (access management tool) Raised Median Raised Median n.d.
Direct Accessto all properties aong the arterial TWLTL Undivided n.d.
Other Effects
Cost of Maintaining Delineation n.d. Undivided Undivided
Median Reconstruction Cost TWLTL Undivided Undivided
Facilitate Snow Removal (i.e., impediment to plowing) TWLTL Undivided n.d.
Visihility of Delineation Raised Median Raised Median n.d.
Aesthetic Potential Raised Median Raised Median n.d.
Location for Signsand Signal Poles Raised Median Raised Median nd.

*The “preferred” left-turn treatment is based on the findings of the source research and the more commonly found
opinions from a review of the literature by the authors of the source research. n.d. = negligible difference or lack of
consensus found in the literature on this factor.

Summary of Findings

In general, past research has typically focused on the operational and safety benefits of different
cross sections, or the construction of TWLTLSs or raised medians aong previously undivided
roadways. Although there has been some recent research about the conversion of urban four-lane
undivided roadways to athree lanes, the subject of these guidelinesis usually only considered
indirectly. Fortunately, the research results, information, and selection guidelines/tools discussed
in the previous paragraphs and documented in past studies were still very helpful with the
identification of the feasibility determination factors described later in this report. For example, it
was concluded that crash type and patterns are important factors to consider for conversion
feasibility because the expected crash reduction benefits of a TWLTL should occur whether there

are one, two, or three lanes of traffic in each direction. Additional information was also gathered
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from several case study conversion locations. The results of these case study conversions are

discussed in the next chapter of this report.
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CASE STUDY RESULTS

Many jurisdictions have converted urban four-lane undivided roadways to a three-lane cross
section. The following paragraphs describe and document the qualitative and quantitative
impacts of conversions both outside and within lowa. V ehicle speeds and crash rates before and
after the conversions are reported if available, and the anecdotal reactions to a conversion at
severa locations are documented. The case study locations outside of 1owa are discussed first
and were identified through an extensive literature review and personal contacts. The same
information for conversion locations within lowa is then presented. In particular, the impacts and
reaction to the recent four-lane to three-lane conversion in Sioux Center, lowa, are extensively

documented.

Case Studies Outside | owa

Montana Case Sudies

An unpublished before-and-after study report from Billings, Montana, was referenced in several
previous studies (1, 2, 9). In 1979, the City of Billings, Montana, restriped 17th Street West from
afour-lane undivided roadway to athree-lane cross section. The roadway was 40 feet wide and
had a 35 mph posted speed limit and an ADT of 9,200 to 10,000 vpd (9). A study of the
conversion impacts indicated that there was no noticeable increase in delay after the roadway was
converted, but that there was a decrease in vehicle crashes (9). There were 37 reported crashesin
the 20 months before the conversion, and 14 for the same time period after the conversion. The
city traffic engineer of Billings, Montana, has concluded that the conversion significantly
decreased crashes with no notable increase in delay (9, 10).

The city of Helena, Montana, has also converted one of its urban roadways (i.e., U.S. 12). U.S.
12 is 48 feet wide and has a posted speed limit of 35 mph. The roadway islocated in a
commercia area and has numerous access points and an ADT of 18,000 vpd (10). The
conversion of this roadway to athree-lane cross section was suggested by the Montana
Department of Transportation for increased safety. It did not have a high overall crash rate, but

the crashes that did occur were primarily of the rear-end and sideswipe type. When the
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conversion was initially proposed there was apprehension initially, but the change resulted in
better operations and safety along the roadway. This fact alleviated most of the concerns
previously expressed by city and some state officials. There also appears to be support for the
conversion from the general public. The state traffic engineer for Montanaindicated that the
number of crashes has decreased aong the roadway segment, traffic flow has been maintained,
and that the public prefers the new three-lane cross section (10).

Minnesota Case Studies

Like the case studies in Montana, there has been a similar change in community acceptance and
understanding for afour-lane undivided to three-lane conversion in Duluth, Minnesota. Many
people, and the local newspaper in Duluth, wereinitially opposed to the conversion of 21st
Avenue East from afour-lane undivided roadway to athree-lane cross section. The roadway had
an ADT of 17,000 vpd, and they felt traffic flow or mobility would suffer. This attitude changed,
however, when the conversion was completed and the newspaper reported what appeared to be a
reduction in congestion and vehicle speed and a subsequent improvement in safety (10).

The safety impacts of converting aroadway from a four-lane undivided cross section to three
lanes have also been investigated in Ramsey County, Minnesota (11). In 1992, Rice Street (T.H.
49) was milled, overlayed, and restriped as a three-lane cross section from Hoyt Avenue to
Demont Avenue.

Three years of before-and-after crash data from Rice Street have been analyzed, and the
following results were found. During the three years before the conversion the ADT on Rice
Street was 18,700 vpd, and 162 crashes were reported (excluding those at the signalized
intersections). During the three years after the construction the ADT on Rice Street decreased to
16,400 vpd, and there were 117 crashes reported (excluding those at the signalized intersections)
(11). In other words, average daily volumes decreased by approximately 12 percent while the
number of reported crashes decreased by approximately 28 percent. These changes equal a
decrease of about 18 percent in the crash rate for the Rice Street roadway segments. Some of this

decrease (possibly the majority) can be attributed to the conversion of the cross section.
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California Case Studies

In the last two years, four four-lane undivided roadways in Oakland, California, have been
converted to three-lane cross sections (12). A preliminary before-and-after comparison of vehicle
speeds and crashes has been done by the city for one of the roadways, High Street, which had an
ADT between 22,000 and 24,000 vpd (12). The other converted roadways had an ADT of 6,000
vpd or 12,000 vpd.

The speeds of 100 vehicles on High Street were measured with aradar gun before-and-after the
cross section was restriped. An analysis of this data did not show any significant changein
vehicle speed (12). However, it has been concluded that this may have been due to the
methodology used to collect the data (i.e., radar gun), the sample size, and/or the ability of adata
collector to get more than one or two vehicles per platoon (12). The residential community
adjacent to High Street believes that the cross section conversion has reduced speeds and unsafe
lane-change maneuvers (12). In addition, city transportation staff believes that the traffic has
been “calmed” (12).

A preliminary analysis of the crashes along High Street has also been completed, and results are
encouraging. There was an annual average of 81.5 reported crashes in the four years before the
1997 remarking of High Street, but in the year after the conversion there have been only 68
crashes reported (12). Thisisa 17 percent reduction in total crashes and may be partidly
attributable to the change in cross section. This conclusion would be consistent with the impacts
experienced at the other previously discussed case study locations. However, additional analysis

of alonger time period of crashesis needed.

The City of San Leandro, California, has also converted two four-lane undivided roadways to
three-lane cross sections (13). The operation and safety of one roadway, East 14th Street, have
been studied (13). Firgt, it was found that spot speeds along this roadway decreased a maximum
of three to four mph after the conversion. Daily volumes, on the other hand, ranged from
approximately 16,000 to 19,300 vpd before the conversion to approximately 14,000 to 19,300
vpd after the conversion (13). Two years of before-and-after crash data also indicated that the
total number of crashes along the roadway decreased by 52 percent, and that sideswipe and rear-
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end crashes decreased by over 60 percent (13). In addition, pedestrians said they felt safer. City
staff believes that thisfeeling is a significant benefit because the roadway passes through a
downtown area and is adjacent to severa schools (13). Expected and perceived increases in delay
at the unsignalized intersections along East 14th Street were a concern, but at the same time it
was recognized that crossing or turning maneuvers had become less complex (13). The high
volumes along the roadway did require the city to widen East 14th Street to two lanesin each
direction at one intersection, and this capacity-related widening maintained the intersection LOS,

but also produced some safety and operational concerns related to the lane transition areas (13).

Washington Case Studies

In their paper, Burden and Lagerwey documented the before-and-after ADT and collision rates of
nine four-lane undivided to three-lane cross section conversions in the Seattle, Washington, area
(14). The ADT along these roadways was between 9,700 and 19,400 vpd before their conversion
and 9,800 and 20,300 vpd after their conversion. The total collision rate reduction observed at
these nine locations (one-year before and after the conversions) ranged from no change to 61
percent. Overal, the average total collision rate reduction for the nine locations was
approximately 34 percent. In addition, Huang et a. have completed a more statistically intense
safety evaluation of a portion of these locations, along with several sitesin California, and found
adecrease in monthly crashes and crash severity, but no change in crash type (15). In their paper
Burden and Lagerwey aso documented the before and after ADT for conversionsin California,
Washington, Pennsylvania, Michigan, and Canada (14). The ADT on these roadways was
between 11,000 and 23,000 vpd before their conversion and 11,000 and 25,900 vpd after their

conversion.

Case Studies Within lowa

Several jurisdictions in lowa have aso converted urban four-lane undivided roadways to a three-
lane TWLTL cross section. Some of these cities include Storm Lake, Muscatine, Osceola, Sioux
Center, Blue Grass, and Des Moines. Other jurisdictions, usually due to safety concerns, have
also begun to consider the feasibility of converting some of their four-lane undivided roadways to
athree-lane TWLTL cross section. It is expected that these guidelines will assist these

jurisdictions and the lowa Department of Transportation (lowa DOT) in thisfeasibility
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determination. The following paragraphs discuss the anecdotal comments about several lowa
case study four-lane to three-lane conversions, the characteristics of the roadways converted, and

the available quantitative operational and safety impacts of these conversions.

Storm Lake, Muscatine, and Osceola Case Sudies

The three cities above have had positive experiences with the conversion of four-lane undivided
roadways to athree-lane cross section. In 1993, thecity of Storm Lake, lowa, converted a portion
of Flindt Drive. This roadway was 40 feet wide and had an ADT of 8,500 vpd. No formal before-
and-after analysis has been done, but there has generally been a positive public response to the
conversion, and city officials are also pleased with the traffic flow and increased safety of the
roadway (10). Clyde Bartel, the lowa DOT Resident Engineer indicates that there hasbeen a“. . .
very positive community reaction . . .” to the conversion in Storm Lake. There were 162 crashes
on this converted section of Flindt Drive during the three years before the cross section change
and 80 crashes during the three years following the conversion. This change represents a 51

percent reduction in crashes.

The Cities of Muscatine and Osceola have had similar experiences with the conversion of Clay
Street (ADT of 8,400 vpd) and U.S. 34 (ADT of 11,000 vpd), respectively. Muscatine City
Engineer, Ray Childs, has reported alarge reduction in crashes due to the Clay Street conversion,
and the reaction to the U.S. 34 conversion in Osceola has changed from skepticism to genera
support (10). In addition, the capacity of U.S. 34 does not appear to be impacted and thereisa
genera sense that the roadway has become safer. Overal, both conversions are considered a

SuUcCcCess.

Soux Center Case Study

In July 1999, the lowa DOT and Sioux Center converted aportion of U.S. 75, afour-lane
undivided roadway, to athree-lane cross section. The conversion was completed for a segment of
U.S. 75 within the commercial business district, and the roadway continued to a four-lane
undivided cross section at each end of the conversion. Thisis somewhat unique for afour-lane
undivided to three-lane cross section conversion. In many cases, for expectancy, functional,

safety, and operational purposes, afour-lane undivided to three-lane conversion is completed for
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an entire corridor, and three-lane to four-lane (or visaversa) transitions are limited. In addition,
the parallel parking along the corridor was continued after the conversion. Maneuvers in and out
of these spaces, with athree-lane cross section (i.e., only one lane in each direction), have a
greater potential to produce more through vehicle delay, and the parking space design took this

fact into account.

The Sioux Center conversion was studied rather extensively as part of this project. First, aLOS
analysis of the corridor with each cross section was done before the conversion. Then, before and
after vehicle delay, vehicle speed, and overall crash frequencies were collected, and an opinion
survey of Sioux Center citizens completed. The results of these activities are presented in the
following paragraphs, and the comments from Sioux Center citizens and public officials

summarized.

Expected LOS and Delay. Prior to the conversion, the lowa DOT used Highway Capacity
Manual procedures to compare the possible operational impacts of two alternative cross section
improvements along U.S. 75 in Sioux Center. An arterial LOS analysis was done for both three-
lane and five-lane cross section designs (10). The ADT aong this roadway was 14,500 vpd, and
the arterial analysis for the corridor indicated that total delay would increase from 20.5to 29.4
seconds when the roadway was converted from afour-lane undivided to a three-lane cross
section. In addition, average speeds were expected to decrease from 16.0 to 14.3 mph, but the
overall arterial level of service would remain at LOS C (10). As expected, the analysis showed
that a conversion to afive-lane cross section would lower total delay from 20.5 to 15.8 seconds
or increase average speed from 16.0 to 17.1 mph. Again, however, it was estimated that the
overall arterial level of service would remain at LOS C (10). The city and thelowaDOT
compared the estimated operational impacts of afive-lane cross section to its expected physical

impacts, and decided to implement a three-lane roadway.

Measured Before and After Speeds and Delays. Vehicle delay and speed measurements were
collected before and after the conversion of U.S. 75 to athree-lane cross section. Not
unexpectedly, it was found that travel times along U.S. 75 (from 4th Street North to 3rd Street
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South) increased during the morning and evening peak travel periods from about 50 seconds to
68 seconds. This corresponds to a reduction in overall average travel speeds (including signal
delays) for the entire segment from 28 or 29 mph to 21 mph. The average free-flow speed
(collected between 1st Street and 2nd Street South), or the average speed chosen by drivers
unrestricted by congestion, was reduced from approximately 35 mph to about 32 mph. A large
portion of the decrease in overall average travel speed appears to be from increased stop delay at
signals and due to vehicles turning right or parking. The percentage of vehicles traveling more
than five mph over the posted speed limit (i.e., 35 mph) also decreased from about 43 percent to
13 percent. Thisis about a 70 percent decrease in the number of drivers observed that were

Speeding excessively.

Overall, the stop delay at the signalized intersection along U.S. 75 appears to have increased, and
noon peak travel period delays appear to be longer than those measured during either the morning
or evening. Side street delays were measured before and after the conversion, but they were
highly variable with respect to the vehicle maneuver (e.g., right- or left-turn), intersection

location and/or design, and time of day.

Measured Before and After Crashes. A preliminary analysis of the crash dataalong U.S. 75
was aso done. During the one year prior to the conversion there were 20 property damage and 10
personal injury crashes within the converted roadway segment. However, during the one year
following the conversion there were only 13 total crashes. Thisisatotal crash reduction of about
57 percent for a period of one year. The analysis of safety datafrom alonger period of time
before and after the conversion is still required, but the conversion of U.S. 75 appears to have

improved its safety. These results also coincide with those of other case studies.

Opinion Survey Results. An opinion survey about the U.S. 75 conversion was also distributed
to the citizens of Sioux Center. Respondents were asked their opinion about several subjects,
whether they supported the conversion before and after it occurred, and whether they believed
that the conversion was in the best interest of the mgjority of Sioux Center residents. The

subjects and questions in the survey are listed below.
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» Traffic safety dong U.S. 75 has been improved

» Trafficcaming along U.S. 75 has occurred (less speeding vehicles, less aggressive
driving)

o Pedestrian crossings are safer

« | experience more delay entering or exiting the side streets

» Didyou support the 4 to 3 lane conversion when it was first proposed?

» Do you support the 4 to 3 lane conversion now?

« Wasthe conversion in the best interest of a mgjority of the residents of Sioux Center?

Nearly 2,000 surveys were distributed, and over 930 responses were received. Thisis about a 47
percent response rate. Included with these responses were over 500 written comments, and some
of these are included in the next section of this report. The responses to the subjects or questions
listed above are discussed and summarized in the following paragraphs. Graphical summaries of
the results are shown in Appendix A.

In general, the survey results indicate that most respondents believed that the conversion had
achieved itsintended goal of reducing speeds and increasing pedestrian safety. About 60 percent
of the respondents agreed or strongly agreed that traffic safety hasimproved along U.S. 75, and
about 66 percent had a similar feeling that the conversion resulted in fewer speeding vehicles and
less aggressive driving. The before-and-after speed and crash data quantitatively support these
conclusions (see the previous sections of this discussion). Fifty percent of the respondents
believed that the pedestrian crossings of U.S. 75 were safer after the conversion, but about 32
percent did not agree with this conclusion. These responses are summarized in the figures
presented in Appendix A.

The survey results also showed that many respondents believed they were experiencing more
delay. Unfortunately, but not unexpectedly, about 86 percent of the respondents reported that
they sometimes to always experience more delay entering/exiting the side streets than theydid
before the conversion. These results represent the tradeoff that is often, but not always, required
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after the conversion of afour-lane undivided roadway to athree-lane cross section. The decision
to convert afour-lane undivided roadway to athree-lane cross section is expected to decrease
crashes, but often requires the acceptance of a decrease (sometimes insignificant) in LOS during
peak hours along the roadway. The lowa DOT and the City of Sioux Center will implement
several minor signalization and geometric improvements that are expected to decrease the delays

currently being experienced.

In general, the survey results also showed a change in public opinion once the conversion was
implemented. Some of the survey respondents reported they were either neutral or in opposition
to the decision to implement the conversion but are now supporters. The survey results indicated
that about 18 percent supported the conversion when it was proposed, 37 percent were neutral,
and 45 percent did not support the conversion. These percentages changed to 45, 15, and 40
percent after the conversion was complete (see Appendix A). A number of people that were
neutral about the conversion now appear to support it. About five percent of the respondents
shifted from complete disagreement to support of the conversion. Overall, about 44 percent of
the respondents believed that the conversion was in the best interest of the majority of Sioux
Center residents, about 21 percent were neutral, and about 35 percent did not believe it wasin the
best interest of the majority of Sioux Center residents. The results appear to indicate that some
respondents still did not support the conversion, but they are neutral with respect to whether it
was in the best interest of the majority of the Sioux Center residents. In April 2000 the Sioux
Center City Council reviewed the results of this survey and the operational impact data

discussed, and decided to retain and extend the three-lane cross section along U.S. 75.

General Comments. There have been many comments, both positive and negative, from the
survey respondents and Sioux Center City officials about the four-lane to three-lane conversion

of U.S. 75. Both types of comments are included in the following list:

» Harold Schiebout (Sioux Center City/Utilities Manager): Mr. Schiebout thanked the lowa
DOT for helping Sioux Center “...improve pedestrian and vehicular safety on Highway 75,

while at the same time trying to maximize traffic movements.”
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Paul Adkins (Sioux Center Police Chief ): Chief Adkinswas quoted by the Sioux Center
Newsin an article entitled “ Police Pleased with Three-Lane Traffic” (September 15, 1999).
Chief Adkinsindicated that the conversion “. . . had a caming effect on the traffic and that
was the goal when the city council agreed to make the change.” He believed that people were

“. .. driving slower and that reduces crashes.”

In the same September 15, 1999 Sioux Center News article (see previous comment), Chief
Adkins did acknowledge that vehicle queues on the roadway had been a concern,
“[e]specially when there are a number of trucks that need to get going after coming to a
complete stop.” In addition, turning left at the signalized intersections has been an issue
because there are no left-turn arrow phases. Chief Adkins aso indicated that there may be
more local drivers using the parallel streets in the downtown area to bypass some of the
delays experienced on U.S. 75. Fortunately, with respect to emergency vehicles, Chief
Adkins said that on the three-lane U.S. 75 “[t]here seems to be enough room for driversto

pull off to the side and still allow the emergency vehicles through.”

Overall, Chief Adkinsis*. .. convinced that for pedestrians, Highway 75 is safer than it was
...", and that pedestrians “. . . see traffic better on the three-lane plan and drivers see
pedestrians better.” He believesthat it has“. . . been a positive experience. It’ s not perfect,
but we are happy with the initial results.” Chief Adkinsadmitsto initialy being opposed to
the conversion, but now he calls himself one of its biggest advocates. He has volunteered to

talk to any city that might be considering a conversion of this type.

Murray Hulstein (Assistant City/Utilities Manager): Mr. Hulstein believes that the public
reaction was initially very negative, but that since the conversion was implemented the
feedback has been mostly positive, rather than negative. The Mayor of Sioux Center agreed
with this assessment. The increase in vehicle delay during peak travel periods at the signals
on U.S. 75 during peak hours appears to be the most significant concern, but the most

significant benefit has been the reduction in speed.
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Representative Negative Survey Responses:

The change has not improved anything! If anything, it has made people be more
aggressive.

Traffic backs up pretty bad at al stoplights, can be several blocks backed up!

During certain times of the day you have to wait for two green lights to get through the
downtown stoplight.

It is the semi-truck trailers that cause congestion at the traffic lights during the busiest
times.

Highway 75 is so busy that no matter when | try to get off the side streets| always have to
walit.

| often take 4th Avenue (aparallel local street) across town during busy times. | see others
doing so aso, so you might just be moving the problem to a new area.

| have witnessed dangerous, almost wild-eyed urgency to gain first position in the areas
leading into the three-lane portions.

| feel with the town growing that you have not found a good solution by going four lanes

to three.

Representative Positive Survey Responses:

| can now stop for a pedestrian without putting them in danger of getting hit by avehicle
in another lane.

Even though | don’t like the change it was the best aternative and I’ m willing to live with
it.

| am pleased with the results of the three-lane conversion project. | definitely feel the
three-lane option was a much better option than the five-lane option.

Very comfortable and pleased with the three lanes. Safer, too, for elderly drivers like me.
So what if it does take us a bit longer to enter and exit, it definitely issafer. That's what
counts.

We feel safer now on the main street. Thanks.

| was definitely against it when first proposed, but | am 100 percent for it now.

Safety—Y es. Convenience—No.

24



The preceding paragraphs represent a summary of the comments from the opinion survey,
numerous public meeting discussions, and the local newspaper. A four-lane to three-lane
conversion is anew ideaand can only be successful or feasibleif there is support in the
community to experiment with it. In addition, the expected safety and traffic flow characteristics
of the converted roadway must be compatible with the goals of the community. The roadway
characteristics that need to be considered and evaluated to determine the feasibility of afour-lane

to three-lane conversion are discussed later in these guidelines.

Blue Grass Case Sudy

In August 1999 the lowa DOT and the City of Blue Grass converted a segment of U.S. 61 (ADT
of 9,900 vpd) from a four-lane undivided roadway to athree-lane roadway. Since the conversion,
Mayor Barns of Blue Grass has indicated that he has heard “. . . very few complaints about the
four to three lane conversion . . . ,” especidly once the traffic signal timing was adjusted. He
believes that the change was the correct decision and that speed has*. . . decreased
substantially.” Before and after speed data show areduction in the 85th percentile speed of
westbound vehicles on U.S. 61 (the primary direction of concern with respect to the conversion)
between one and four miles per hour. The 85th percentile vehicle speeds along eastbound U.S.
61, on the other hand, unpredictably ranged from a decrease of one mph to an increase of two

miles per hour.

The Police Department in Blue Grass (i.e., Sgt. John Jensen) acknowledged that they are still
writing speeding tickets, but that the safety of the roadway appears to have improved. An
analysis of the vehicle speed data at two locationsin July (one month before the conversion),
September (one month after the conversion), and December 1999 (four months after the
conversion) indicate that the number of vehicles traveling five miles per hour faster than the
speed limit initially decreased but may have rebounded. In the 45 mph posted speed limit area,
the percentage of westbound (the primary direction of concern with respect to the conversion)
vehicles traveling over 50 miles per hour went from 9.4 percent in July to 3.0 percent in
September (areduction of 68 percent). In December, however, the percentage over 50 miles per
hour rebounded to 12.6 percent. The number of speeders in the eastbound direction stayed nearly

the same (e.g., 1.8 percent in July to 1.3 percent in December). The percentage of westbound
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vehicles traveling more than 40 miles per hour in the 35 mph posted speed limit areafollowed a
similar pattern. Westbound vehicles traveling faster than 40 miles per hour represented 1.7
percent of the traffic flow in July, O percent in September, and 1.9 percent in December. The
number of vehicles traveling east at more than 40 miles per hour, on the other hand, was reduced
from 2.1 percent in July to 0.8 percent in September and 0.7 percent in December. This decrease
represents a reduction in eastbound vehicles traveling over 40 miles per hour along the 35 mph

posted speed limit segment of about 64 percent.

Des Moines Case Sudy

Des Moines aso recently converted a portion of Beaver Avenue to a three-lane cross section, but
the segment converted originally operated as several different cross sections. Some of the
roadway segment converted was striped as a four-lane undivided roadway, other segments were
striped with and used as a two-lane undivided cross section, and still other segments had 40 feet
or more of paved surface and were marked for two lanes but used as four lanes. Unlike the other
case studies, therefore, this conversion was not a*“ pure” four-lane undivided to three-lane

roadway cross section change.

The combination of cross sections discussed in the previous paragraph and the impacts of some
roadway construction that occurred on some of the Beaver Avenue cross streets appears to have
produced some unusual before-and-after results. For example, it was found that the average
travel speed on Beaver Avenue between Aurora Avenue and Sheridan Road actually increased
from about 21 mph to about 25 mph during the peak travel periods. In addition, the average stop
delay on this segment of roadway decreased for both directions of travel during the evening peak
travel period, and for the northbound direction of travel during the morning peak travel period. It
would appear that the initial mixture of cross sections might have produced confusion and
transition conflicts, and these characteristics were removed when one three-lane cross section
was installed aong the entire roadway segment. The simplicity of the new cross section may
have produced a smoother, although dlightly faster, flow of traffic along this segment of Beaver
Avenue. Overall, however, alocal city councilman and Beaver Avenue merchant told the local
Des Moines newspaper that they initidly thought the city was crazy when they proposed the
conversion, but now they both support the change.
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Summary of Findings

Table 4 summarizes the case study analysis results and anecdotal conclusions discussed in the
previous paragraphs. In general, the results of the case studies appear to support past research
conclusions. The before-and-after crash results and/or LOS analysis indicate that the conversion
of afour-lane undivided roadway to athree-lane cross section can improve the safety of a
roadway without dramatically decreasing the LOS provided. Vehicle speeds aong the roadway
may/can decrease somewhat and total delay increase, but safety is usually improved (sometimes
dramatically). To achieve these results, however, this type of conversion must be done at the
appropriate locations. The following chapter describes the sensitivity analysis used to investigate
the operational impacts of a four-lane undivided to three-lane conversion. These impacts are
some of the roadway characteristics that must be considered to determine the feasibility of
converting an undivided four-lane roadway to athree-lane cross section. All these factors are

discussed later in this report.
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Table4 Case Study Analysis Results (9, 10, 11, 12, 13, 14, 15)*

L ocation | Approx. ADT | Safety | Operations
Montana
Billings—17th Street West 9,200-10,000 62 percent total crash No Notable Decrease**
reduction (20 months of
data)
Helena—U.S. 12 18,000 Improved** No Notable Decrease**
Minnesota
Duluth—21st Avenue East 17,000 Improved** No Notable Decrease**
Ramsey County—Rice Street | 18,700 Before 28 percent total crash NA
16,400 After reduction (3 years of data)
lowa
Storm Lake—Flindt Drive 8,500 Improved** No Notable Decrease**
M uscatine—Clay Street 8,400 Improved** NA
Osceola—U.S. 34 11,000 | mproved** No Notable Decrease**
Sioux Center—U.S. 75 14,500 57 percent total crash Overall travel speed
reduction (1 year of data) | decreased from 28-29 mph
to 21 mph, and free-flow
speed from 35 to 32 mph.
There was a 70 percent
decrease in speeds greater
than 5 mph over the posted
speed limit.
Blue Grass 9,200-10,600 NA 85th percentile speed
reduction up to 4 mph (two
locationsincreased 1 to 2
mph in one direction). The
change in percent vehicles
speeding depended upon
location and direction (see
discussion).
DesMoines (Note: Thiswas | 14,000 NA Average travel speed
aconversion from multiple increased from 21 to 25
Cross sections to athree-lane) mph
California
Oakland—High Street 22,000—24,000 17 percent in total crash No notable change in
reduction (1 year of data) | vehicle speed
San Leandro—East 14th 16,000-19,300 Before | 52 percent in total crash Maximum of 3 to 4 mph
Street 14,000-19,300 After reduction (2 years of data) | spot speed reduction
Washington
Seattle—Nine Locations 9,400-19,400 Before | 34 percent average total NA
9,800—20,300 After crash reduction (1 year of
data)

*NA = Not Available. Safety data duration isfor before/after conversion.
** Summarized results based on anecdotal information.
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FOUR-LANE UNDIVIDED AND THREE-LANE ROADWAY TRAFFIC FLOW
SIMULATION

The traffic flow impacts of four-lane to three-lane conversions were investigated as part this
research to supplement the case study results documented in the last chapter. As previoudy
discussed, the primary reason for most of the four-lane undivided to three-lane case study
conversions was improved safety. The typical assumption, however, was that thisincrease in
safety must be accompanied by a significant reduction in roadway mobility. This conclusionis
supported, at least partialy, by the case study results. The dramatic decrease in crashes that
typically occurred, however, was usually only accompanied by arelatively small decreasein
vehicle speed and/or increase in intersection delay. The case study conversions were also

successful over alarge range of traffic volumes (see Table 4).

Four-lane undivided to three-lane conversions are operationally feasible if the reduction or
changein arterial LOS (i.e., the decrease in average arterial travel speed and/or increase in stop
delay) that occurs with the conversion is locally acceptable. The objective of the sensitivity
analysis discussed in this chapter was to determine the roadway characteristics that minimize the
average arterial travel speed impacts of afour-lane undivided three-lane cross section conversion.
It was concluded that this sensitivity analysis would be completed with a simulation software
package, and that the average arterial travel speed and LOS would be calculated, determined, and
compared for four-lane undivided and three-lane roadways with similar traffic flow and
geometric characteristics.

Very little research has been done on the operational impacts of four-lane undivided to three-lane
conversions. This lack of research is due to the somewhat unusual nature of the type of
conversion being considered, and the general lack of TWLTL analysis and/or evaluation tools
available. Recently, the interest in this type of conversion has increased, but the tools that focus
on the operation of TWLTLs are still almost nonexistent. Recently proposed deterministic
models (that account for some of the TWLTL weaknesses in currently available simulation
packages) were also available, but were not used in this project (5, 6). These models are

described in the past research chapter of this document, and their application to four-lane
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undivided to three-lane cross section conversion evaluation is a prime candidate for future

research.

In general, this chapter describes the comparison of several simulation software packages and
documents the process and results of the sengtivity analyss used to determine the roadway
characteristics most compatible with four-lane to three-lane conversions. The advantages and
disadvantages of each simulation software package are discussed, and one of the candidates
chosen and used in the sensitivity analysis. The characteristics of the corridor evaluated in the
sensitivity analysis are described, and the process used to apply the chosen simulation software
package presented. Finally, the sensitivity analysis procedure, factors, and results are presented
and discussed.

Simulation Software Comparison

Computer simulation is a powerful tool that allows the adjustment and subsequent andysis of an
existing or proposed roadway corridor or system. For this project, it was concluded that a
simulation approach would be used to evaluate the traffic flow impacts of converting an urban
four-lane undivided roadway to athree-lane cross section. Simulation software packages quickly
produce measures that represent general corridor operations and also provide a researcher with
the capability to evaluate the expected performance of a particular roadway corridor with awide

range of characteristics (e.g., traffic volume, number of access points).

Very few simulation software packages have been specifically designed to model the operation of
aTWLTL. The three packages reviewed and compared as part of this research included the Ohio
State University arterial ssimulation (ARTSIM) software, the University of Nebraska TWLTL
simulation (TWLTL-SIM) program, and the Federal Highway Administration corridor simulation
(CORSIM) tool. Each of these software packages has been used to simulate the operation of a
four-lane undivided roadway but had varying capabilities with respect to the accurate simulation
and evaluation of TWLTL operation. Other simulation software packages exist and could be

considered in future research in this area.
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ARTSM

ARTSIM was developed in 1983 at Ohio State University (16). This software package was
specifically designed to analyze four-lane arterials with and without TWLTLS, and incorporated
both free-flow and congested vehicle behavior models (16). Car-following routines based on
stimulus-response equations are al'so used in ARTSIM. Unfortunately, this software cannot
analyze three-lane roadways and does not appear to be available to the general public or
researchers. No user manual (except Helkal’ s dissertation) or useable software has been
developed (16).

TWLTL-SM

TWLTL-SIM was also reviewed (6). This simulation package has afocus similar to ARTSIM.
TWLTL-SIM was developed by Ballard and McCoy at the University of Nebraska and has five
separate subprograms. Unlike ARTSIM, however, TWLTL-SIM can account for signalized
intersection impacts and has the ability to evaluate various arterial configurations (i.e., different
intersection spacing and access point densities). The output from TWLTL-SIM also includes
average through vehicle travel time and average | eft-turn vehicle delay for each ssmulation.
During its validation, the output of TWLTL-SIM was found to not be significantly different from
the mgjority of the field site observations, and typically the results were within 10 percent of
these observations (6).

There are some limitations to the TWLTL-SIM software. For example, if a queue of vehicles
blocks the place a left-turn vehicle wants to enter the TWLTL, that vehicle will wait at the end of
the queue until that particular location is no longer blocked. In reality, avehicle turning left
would typically enter the TWLTL upstream of any vehicle queue that may exist, and this would
reduce the delay reported by TWLTL-SIM. A similar disadvantage relates to how lane-choice
decisions are simulated. TWLTL-SIIM assumes that through vehicle drivers make lane-choice
decisions based on the vehicles immediately around them. This can result in significant, but
unrealistic, smulated delays if access points and/or intersections are closely spaced and traffic
volumes are high enough that some lane changes require the vehicle to stop in the through lane.

Realistically, drivers on roadways with high volumes and closely spaced access points and/or
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intersections will make lane change decisions, and the actual |ane change, upstream of where it
needs to take place. Finaly, TWLTL -SIM has not been updated for some time, and athough the
software is available, the documentation needed to adequately apply it does not exist in an
adequate format.

CORSIM

The CORSIM software package was developed under the sponsorship of the Federal Highway
Administration (17). It is one of the most commonly used and generally available traffic
simulation tools in the United States and can be used to evaluate the traffic flow along a corridor
or roadway network of freeways and surface streets. CORSIM uses widely accepted driver
behavior models and produces measures of effectiveness for the evaluated transportation system
that can generally be related to accepted traffic flow evaluation procedures (i.e., Highway
Capacity Manual [HCM] processes). The output of CORSIM includes (but is not limited to)
travel time, average vehicle delay, average stop delay, and queue length (17).

CORSIM was not specifically designed to evaluate the operation of TWLTLS. In the past,
however, CORSIM was adapted to approximate the operation of TWLTLs. TWLTLSs between
two access points were represented by back-to-back |eft-turn lanes, and these turn lanes were
designed to be as long as possible in order to serve the highest number of left-turn vehicles
without an impact on the through lane(s). The weaknesses of this adaptation, especially for
certain operational and physical situations, are generally recognized. For example, if the access
points are close enough and the left-turn volumes high enough, left-turn vehicles can queue into
the through lane(s). This situation would not occur if actual TWLTL operations could be
simulated because left-turn traffic would continue to queue along the TWLTL. The impact of this
approximation can be a CORSIM simulation that produces unrealistic delay results. Therefore, if
CORSIM is used for the evaluation of roadways with a TWLTL, volume levels and access point
and/or intersection spacing must be monitored so the simulated | eft-turn vehicles do not queue
into the through lanes. If through lane blockages do occur and these volume and geometric
design characteristics need to be evaluated, a different software package or analysis approach
should be used.
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Summary of Findings

It was concluded that a simulation software package should be used to evaluate the operation of
urban four-lane undivided and three-lane roadways with similar traffic flow and geometric
characteristics. Few simulation packages, however, are specifically designed analyze the
operation and impacts of TWLTLs. ARTSIM and TWLTL-SIM were devel oped to address this
deficiency, but neither of these programsis currently available for use and/or properly
documented. CORSIM, on the other hand, is widely used and accepted. It is easily acquired and
itsuseis extensively documented. Concerns exist about the ability of CORSIM to accurately
simulate the operation of a TWLTL have been expressed, but it is believed that most of the
impacts from these limitations can be overcome if the traffic flow and geometric design
characteristics that produce unwanted results are avoided. For these reasons, CORSIM was used
in this research, but al the simulations completed were visually observed to confirm that
unrealistic queuing or delay results did not occur. The characteristics of the simulated case study
corridor, the factors adjusted to compl ete the sensitivity analysis of urban four-lane undivided

and three-lane operations, and the sensitivity analysis results are described in the following
paragraphs.

Case Study Corridor Characteristics

CORSIM was used to ssimulate the traffic flow of a case study corridor with afour-lane
undivided and athree-lane cross section. This case study corridor was defined by the authors of
this report (see Figure 3) and had the following fixed characteristics for both roadway cross

sections;

The roadway segment was 1/4-mile long.

« Through traffic volumes were equally distributed in each direction along the major roadway
segment (i.e., there was a 50/50 directional split).

» Pretimed two-phase signalized intersections exist at each end of the roadway segment.

« Thetiming of the two-phase signals was optimized using the SY NCHRO software approach
(e.g., delay minimization) and assuming they comprised atwo-signal system.

« No left- or right-turn lanes exist along the four-lane undivided roadway.

« Noright-turn lanes exist along the three-lane roadway.
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» Right- and left-turn volumes each represent 10 percent of the through volume at each
signalized intersection.

« Right-turn volumes entering/exiting the number of access points used in an individual
simulation represented 10 percent of the traffic flow.

» Theturn volumes entering/exiting each access point and minor street are equal.

» There were no through volumes at the four-leg access points (see Figure 3), and the minor
street approach volumes at the signalized intersections were assumed to be equal to 40
percent of the major roadway traffic flow at the intersection.

« A 30 mph travel speed was assumed for both cross sections.

« Only four-leg intersections occur between the major roadway and the access points and minor
Streets.

« All minor street and access point approaches have asingle lane.

Each of the variables listed was fixed for al the four-lane undivided and three-lane CORSIM
simulations completed. The traffic flow and geometric factors that were adjusted as part of the

sensitivity analysis, along with the process followed in the analysis, are described in the next

section.
Minor Street Minor Street
Signa A Variable Number Signal B
of Access Points
il | el
| | | Major Roadway
(Four-Lane Undivided or
Three-Lane Cross Section)
1/4 mile
« >

Figure3 Simulated Case Study Corridor
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Sengitivity Analysis Factors

The sensitivity analysis done as part of this research simulated the traffic flow of a case study
corridor with either afour-lane undivided or three-lane cross section. Each of these cross sections
was simulated with various combinations of total entering volume, access point left-turn
volumes, and access point densities. The values evaluated for each of these variables are shown
in Table 5, and the reasoning used to select these values is discussed in the following paragraphs.

Total Entering Volume

Thetotal volume of traffic entering the smulated corridor was adjusted as part of the sensitivity
analysis. As previously discussed, there have been successful case study conversions with ADT
as high as 24,000 vpd. In lowa, however, conversions have typically had an ADT between 8,400
to 14,500 vehicles. Preliminary analyses have aso indicated that an unacceptable intersection
LOS (i.e., LOS F) may begin to occur with daily volumes near 20,000 vpd (assuming that 10

percent of this volume occurred during the peak hour).

Based on the information discussed in the previous paragraph, daily volumes of 10,000, 15,000,
17,500, and 20,000 vpd were chosen for evaluation in the sensitivity analysis. These daily
volumes were then converted into directional hourly volumes based on an assumption that 10
percent of the daily traffic would occur during the peak hour and that a 50/50 directional split
would occur. These assumptions, applied to the daily volumes chosen, produced hourly
directiona traffic volumes of 500, 750, 875, and 1,000 vehicles per hour per direction (vphpd)
(see Table 5).

Access Point Left-Turn Volume

The percentage of total entering vehicles that turn left at the corridor access points was aso
changed as part of the sensitivity analysis. In past research, Bonneson and McCoy did field
studies and found that the percentage of vehicles turning left along a 1/4-mile segment (i.e., mid-
block left turns) varied from 5 to 13 percent (6). The sensitivity analysis completed as part of this
research considered left-turn percentages of 5, 10, and 15 percent (see Table 5) and assumed that
these turns were equally distributed among all the access points. For example, if there were five

access points per side of roadway, and it was assumed that five percent of the entering traffic
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turned left, then one percent of the entering traffic would be assigned to each of the five access
points.

Table5 Sensitivity Analysis Factors

Characteristic Values Evaluated
Tota Entering Volume (vehicles per hour per direction) 500, 750, 875, and 1,000
Access Point Left-Turn Volume (percent of through 10, 20, and 30

volume)*

Access Point Density (points per mile per side) 0, 10, 20, 30, 40, and 50

*eft-turn volumes are evenly distributed among the access points.

Access Point Density

In addition to the impact of total and left-turn volumes, the impact of access point density was
also evaluated as part of this sensitivity analysis. Six different access point densities were
simulated for each combination of entering and access point |eft-turn volumes considered (see
Table5). In Minnesota, it has been shown that there is an average of 8 and 28 access points per
mile on roadways in rural and urban areas, respectively (18). In addition, Bonneson and McCoy
have used data from seven case study corridors that had access point densities from 0 to 90 per
mile (6). It was decided that this research would consider access point densities between 0 and 50
per mile per side of roadway (i.e., 0 to 100 access points per mile for both sides of the entire
roadway). The six density levels considered in this sensitivity analysisincluded O, 10, 20, 30, 40,
and 50 access points per mile per side (ppm) of the roadway (see Table 5). These access points
were evenly distributed along the 1/4-mile case study roadway segment and were positioned
directly opposite each other on both sides of the roadway (see Figure 3).

Sensitivity Analysis Process
The values chosen for the three sensitivity analysis factors (see Table 5) result in 64 roadway
corridors. All 64 of these combinations are shown in Table 6, and each of them was simulated in

the following manner for both cross sections. First, Synchro, an optimization and simulation
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Table6 Access Point Density, Access Point Left-Turn Volume, and Total Entering Volume
Combinationsfor Sensitivity Analysis*

Access Access Point Access Access Point
Point Left-Turn Total Entering Point Left-Turn Total Entering
Density Volume Volume Density Volume Volume
(ppm) (per cent) (vphpd) (ppm) (per cent) (vphpd)
0 0 500 40 10 500
750 750
875 875
1000 1000
10 10 500 20 500
750 750
875 875
1000 1000
20 500 30 500
750 750
875 875
1000 1000
30 500 50 10 500
750 750
875 875
1000 1000
20 10 500 20 500
750 750
875 875
1000 1000
20 500 30 500
750 750
875 875
1000 1000
30 500 * ppm = access points per mile per side of
750 roadway; percent = percent of entering volume;
875 vphpd = vehicles per hour per direction.
1000
30 10 500
750
875
1000
20 500
750
875
1000
30 500
750
875
1000
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software package, was used to optimize the signal timing. Then, for each combination of analysis
factors, the optimized signal timings were used within CORSIM to simul ate the operation of the
case study corridor (see Figure 3) for each combination of anadysis factors and each cross section.
All 128 corridors (i.e., 64 factor combinations for two corridors) were simulated five times (for a
total of 640 simulations), and the average results from these simulations are presented in the
following paragraphs. Five simulations were completed (and average results cal culated) to more
accurately represent the expected traffic flow and to acknowledge the stochastic nature of the
CORSIM simulation results.

As previoudly discussed, the operation of a TWLTL must be approximated in CORSIM as
multiple back-to-back turn lanes. The weaknesses of this approximation were recognized, and the
vehicle movements in each three-lane cross section ssimulation were visuadly observed to
alleviate any concerns related to the production of unrealistic delays. Fortunately, none of the
traffic flow and geometric combinations considered in this sensitivity analysis resulted in turn
vehicles queuing in the through lanes of the cross section simulated. In other words, it is
believed that the speed and delay results from the CORSIM simulations closely approximate the
expected traffic flow.

Sengitivity Analysis Results

CORSIM output contains a number of measures that can be used to describe the operation of an
arterial roadway. For this research, the average CORSIM output for each combination of the
three factors previously described was cal culated and compared for afour-lane undivided and a
three-lane roadway. More specifically, the speed and delay outputs from CORSIM were used to
determine, compare, and report the average arterial travel speed (for through vehicles), the
arterial LOS, and the signalized intersection LOS for each roadway cross section and

combination of input factors (see Table 5 and 6).

In general, the CORSIM output allowed the determination of the average arterial travel speed,
arterial LOS, and intersection LOS discussed in the 1994 Highway Capacity Manual rather than
its 1997 update (19). A change in 1997 from stop- to control-delay per vehicle asthe LOS

measure at intersections (and consequently arterial LOS) could not easly be reproduced from the
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CORSIM output. For this reason, the 1994 HCM approach was used in this research to calculate
average arterial travel speed, arterid LOS, and intersection LOS. The average arterial travel
speeds, arterial LOS, and intersection LOS calculated from the simulation results reveal ed

several trends. These trends are discussed in the following paragraphs.

Average Arterial Travel Speed

The average arterial travel speed for the through vehicles on the simulated roadway was
calculated by dividing the length of the corridor by a summation of their roadway segment travel
time (i.e., arteria running time) and signalized intersection stop delay. This measure was
calculated from the CORSIM results for each simulation. The average arteria travel speed for
each cross section and combination of sensitivity analysis factors are shown in Appendix B and
summarized in Tables 7, 8, and 9. The difference between the average arterial travel speed for
each roadway cross section (with the same volume and access density characteristics) isaso

shown.

General Summary. Overall, a comparison of the ssmulated four-lane undivided and three-lane
average arterial travel speeds support the case study results (see Table 7). The simulation results
showed that (for a given combination of volume and access density characteristics) the four-lane
undivided cross section amost always resulted in a higher average arterial travel speeds than
those allowed along a three-lane roadway. The largest simulated difference between four-lane
undivided and three-lane average arterial travel speed was 3.9 mph for al the input factor
combinations (see Table 7). This difference occurred when the ssmulated corridor had no access
points (i.e., there were no left- or right-turn volumes). However, if the simulation results from the
corridors with no access points are disregarded, the maximum difference decreased to 3.8 mph.
The case study locations showed similar differences in average or 85th percentile speeds. The
overall average difference in average arteria travel speeds was 1.8 mph whether the results from

the corridors with no access points were accounted for or not.

The differences between the average arterial travel speeds produced from this sensitivity analysis

reveal severa interesting patterns (see Appendix B). For example, all the average arteria travel
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Table7 Simulated Average Arterial Travel Speed Summary Statistics*

Undivided Four-Lane Three-Lane Average Arterial Min. M ax.
Sensitivity Analysis Average Arterial Average Arterial Travel Speed Diff* | Diff.*
Factor Travel Speed (mph) Travel Speed (mph) | Difference (mph)* | (mph) | (mph)
Total Entering Volume (vphpd)**
500 22.0 20.7 1.3 0.8 17
750 20.3 19.6 0.7 0.0 2.0
875 20.5 18.7 1.8 15 2.7
1000 19.4 16.3 3.1 1.8 3.8
Access Point Density (ppm)
0 22.1 19.6 25 15 3.9
10 215 19.6 19 0.8 35
20 21.2 19.2 2.0 0.7 3.2
30 20.3 18.6 1.8 0.4 35
40 19.8 18.1 1.7 0.0 3.8
50 20.1 18.6 14 0.2 3.6
Access Point L eft-Turn Volumes (per cent of total entering volume)
10 20.6 18.7 19 0.0 3.6
20 20.6 18.8 1.7 0.2 3.8
30 20.6 18.9 17 0.4 3.7

*Difference = Average Arteria Travel Speed with the Four-Lane Undivided Cross Section - Average Arteria Travel
Speed with the Three-Lane Cross Section; vphpd = vehicles per hour per direction; ppm = access points per mile per
roadway side.

**Differences for total volumes do not include those for the corridor with no access points.

Table8 AverageArterial Travel Speed for Various Access Point L eft-Turn Volumes**

Access Point L eft-

Total Entering Turn Volume Four-LaneUndivided Three-LaneAverage AverageArterial
Volume (percent of total Average Arterial Arterial Travel Travel Speed
(vphpd)* entering volume) Travel Speed (mph)* Speed (mph)* Difference (mph)*

10 221 20.6 15
500 20 22.0 20.6 13
30 21.9 20.8 1.1
Avg. — 22.0 20.7 1.3
10 20.5 19.6 0.9
750 20 20.3 19.7 0.7
30 20.3 19.7 0.6
Avg. — 20.3 19.6 0.8
10 20.6 18.6 2.0
875 20 20.5 18.7 18
30 20.5 18.7 1.8
Avg. — 20.5 18.7 1.9
10 19.3 16.2 3.1
1,000 20 19.5 16.3 3.1
30 19.6 16.4 3.3
Avg. — 194 16.3 3.2

* Difference = Average Arterial Travel Speed with the Four-Lane Undivided Cross Section - Average Arterial Travel
Speed with the Three-Lane Cross Section; vphpd = vehicles per hour per direction.

** Any discrepanciesin table are due to round-off error,
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Table9 AverageArterial Travel Speed for Various Access Point Densities**

AccessPoint  Left-Turn Volume Four-LaneUndivided Three-LaneAverage AverageArterial
Density (percent of total Average Arterial Arterial Travel Travel Speed
(ppm)* entering volume)* Travel Speed (mph)* Speed (mph)* Difference (mph)*

0 0 22.1 19.6 2.5
10 21.6 19.6 2.0

10 20 21.5 19.6 19
30 21.3 19.7 1.6

AvaQ. — 21.5 19.6 1.9
10 21.5 19.1 24

20 20 21.1 19.2 19
30 20.9 19.2 1.7

Ava. — 21.2 19.2 2.0
10 20.3 184 2.0

30 20 204 18.7 1.7
30 20.3 18.7 1.7

Ava. — 20.3 18.6 1.8
10 19.8 18.1 17

40 20 19.8 18.1 18
30 19.9 18.2 1.8

Ava. — 19.8 18.1 17
10 19.9 18.6 1.3

50 20 20.0 18.7 1.3
30 20.3 18.6 1.7

Avg. — 20.1 18.6 14

* Difference = Average Arterial Travel Speed with the Four-Lane Undivided Cross Section - Average Arterial
Travel Speed with the Three-Lane Cross Section; vphpd = vehicles per hour per direction, ppm = access points per
mile per roadway side.

** Any discrepancies in table are due to round-off error.

speed differences greater than 3 mph occurred at the highest hourly volume considered (i.e., 1000
vphpd). However, the biggest difference in average arterial travel speed for each volume level
typically, but not always, occurred when the corridor was assumed to have no access points or
turn vehicles. Thisresult is not surprising; from an operational point of view there would be no
reason to convert afour-lane undivided roadway with no access points to athree-lane cross

section unless the signalized intersections were a concern or speed reduction was the objective.
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Total Entering Volume Summary. Tables 7 and 8 show that the simulated average arterial
travel speeds for four-lane undivided and three-lane roadways are most similar when the total
entering volume was 750 vphpd. This similarity appears to become more obvious as the number
of access points and the left-turn volumes increase. This trend supports the premise that four-lane
undivided roadways begin to operate like “defacto” three-lane roadways as access point density
and left-turn volumes increase. The average arterial travel speed difference, however, for al
simulations with an entering volume of 750 vphpd was 0.7 mph, and this difference increased to
1.3, 1.8, and 3.1 mph for simulations with an entering volumes of 500, 875, and 1,000 vphpd,
respectively (see Table 7). If it is assumed that these hourly volumes represent 10 percent of the
daily traffic and 50 percent of the total bi-directional traffic: 500 vphpd would be equivalent to
an ADT of 10,000 vpd, 750 vphpd would be equivalent to an ADT of 15,000 vpd, 875 vphpd
would be equivalent to an ADT of 17,500 vpd, and 1,000 vphpd would be equivalent to an ADT
of 20,000 vpd.

Not surprisingly, the impact of an increase in entering traffic on average arterial travel speedis
more dramatic along a three-lane than a four-lane undivided roadway (see Table 7). The decrease
in average arterial travel speed, astotal entering volume increases from 500 to 1,000 vphpd, is
about 2.6 mph for the four-lane undivided simulations and about 4.4 mph for the three-lane cross
section. These results, along with those described in the previous paragraph, support the
importance of considering the magnitude and stability of traffic volumes during the entire design
period of a potential conversion. The objective of the community (e.g., adecrease in speed) must
also closely match the expected results of the conversion. The simulation results show that the
operational (or average arterial travel speed) impacts of four-lane undivided to three-lane
conversions can be minimal for hourly volumes at or below 750 vphpd, but that these impacts
should be more closely evaluated for volumes above 750 vphpd.

Access Point Density Summary. Tables 7 and 9 show that the difference between four-lane
undivided and three-lane average arterial travel speeds change with access density. Of course, as
previously discussed, the largest difference in four-lane undivided and three-lane average arterial

travel speed occurs when the ssmulated corridor had no access points (i.e., no left- or right-turn
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volumes). When access points do exist, along with left-turn volumes, the difference in average
arterial travel speed islargest for the corridors smulated with an access dengty of 20 ppm (for
the corridor characteristics considered). This difference was just 2.0 mph, but it decreased to 1.9,
1.8, and 1.7 mph for corridors with an access density of 10, 30, and 40 ppm, respectively. The
range of all these average arterial travel speed differencesis only 0.3 mph. Thesmallest
difference in average arterial travel speed was simulated when the access point density was 50
ppm (the largest access point density considered). The overall average difference in average
arterial travel speed was only 1.4 mph at thislevel of access point density. If fact, for agiven
total entering volume, the smallest differencein average arterial travel speed occurred when the

access density was either 40 or 50 ppm.

The results discussed in the previous paragraph should not be surprising. As previously
discussed, it is expected that some four-lane undivided roadways would begin to operate like a
three-lane cross section as access point dendty and left-turn volumes increase. Table 9 shows
that the overall average arterial travel speed for both roadway cross sections decrease until an
access point density of 40 ppm. At an access point density of 50 ppm the average arterial travel
speed of the simulated corridors actually increases for both cross sections, and the difference in
average arterial travel speed continues to decrease (see the previous discussion). It is speculated
that at this access point density level (for the entering and left-turn volumes considered) the
traffic flow along four-lane undivided and three-lane roadways becomes more similar because of
the magnitude and pattern of left-turn vehicles. For example, the inside lanes of afour-lane
undivided cross section may be blocked by left-turn traffic on such a consistent basis that through
vehicles primarily use the outside lane. The result is afour-lane undivided corridor that (at least
partially) operates as a defacto three-lane roadway. However, even when an access density of 50
ppm was simulated, the overall average arterial travel speed for four-lane undivided roadways

was still higher than a three-lane corridor with the same characteristics.

Additional analysis of the CORSIM results reveals that the average arteria travel speed trend
shown in Table 7 for different total entering volumes also typically occurs for each access density
that was considered. In other words, for a given access density, the average arteria travel speed

for athree-lane cross section typicaly decreases as total entering volume increases. For afour-
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lane undivided cross section, however, average arterial travel speed (for a given access density)
decreases between 500 and 750 vphpd, increases at 875 vphpd, and then decreases again when
the total entering volumeisat 1,000 vphpd. For the entering and turn volumes, access point
densities, and corridor design considered, therefore, the operation (as measured by average
arterial travel speed) of the three-lane roadway decreased as volumes increased, but the operation
of the four-lane undivided roadways actually improved somewhat between 750 and 875 vphpd
before decreasing again between 875 and 1000 vphpd. Whatever the access density, however, the
smallest difference between four-lane undivided and three-lane average arterial travel speeds still

occurs when the total entering volume is 750 vphpd.

Access Point Left-Turn Volume Summary. In general (see Table 8), the magnitude and
differences between the simulated average arterial travel speeds of the four-lane undivided and
three-lane roadways decreased as access point |eft-turn volumes increased (for a given entering
volume). As left-turn volumes increased, the average arterial travel speed of the four-lane
undivided roadways usually decreased or stayed the same, but increased or stayed the same for
the three-lane roadway. Not unexpectedly, left-turn vehicles become a hindrance to through
vehicles aong afour-lane undivided roadway but are removed as a hindrance along a three-lane
roadway. It is expected that this similarity would become more obviousif larger percentages of

left-turn volumes were considered.

The only instance in which the addition of |eft-turn vehicles did not seem to follow the pattern
described in the previous paragraph was when a volume of 1,000 vphpd (the highest entering
volume considered) was simulated for each cross section (see Table 8). When a volume of 1,000
vphpd was simulated, the average arterial travel speed increased with the left-turn percentage for
both cross sections (rather than just for the three-lane cross section). While the ssimulated average
arterial travel speeds along the four-lane undivided corridors are still be about three mph higher
than those simulated for three-lane cross sections, the traffic flow patterns (at least with respect
to the average arterial travel speed) appear to be more alike. It is speculated that the average
arterial travel speed (at this high entering volume level) along a three-lane roadway increases as

more vehicles are removed from the path of the through vehicles, and that four-lane undivided



roadways begin to experience arelatively stable traffic flow of mostly left-turn vehiclesin the
inside lanes and through vehiclesin the outside lanes (i.e., a defacto three-lane operation). The
fact that the difference in average arteria travel speed is still about three mph requires additional
investigation. This difference may ssmply be due to the fact that a four-lane undivided roadway
allows some lane changes (i.e., avoidance of turn vehicle conflicts) even at high volumes, but

three-lane roadways do not.

Overdl, for al the access point and entering volume combinations considered, the differencein
simulated average arterial travel speed for four-lane undivided and three-lane roadways was
between 1.7 to 1.9 mph as the left-turn volume percentage increased (see Table 7). The
similarity of the speeds shown in Table 7 (for different access point |eft-turn volumes) is the
combined result of the changes discussed in the previous paragraph (i.e., some of the differences
in average arterial travel speed decrease, but othersincrease, as total entering volumes change).
The results also show that, for the corridor design considered, specific left-turn and entering
volumes are served most appropriately by a specific number of access points. It is expected that
the evenly distributed left-turn percentages and access point spacing used in the case study
simulation helped produce the similarity in the results for different access point left-turn

volumes.

Arterial and Intersection Level of Service

In addition to average arterial travel speed, an arterial and intersection LOS was determined for
each cross section and combination of sensitivity analysis factors. The LOS measure isamore
genera indicator of traffic operations and represents arange of traffic flow operations (see Table
10). The CORSIM results were used to calculate average arterial travel speed (see the previous
discussion) and determine the stop delay at the signalized intersections (which, given the
simulation assumptions, had equal through and turn volumes) along the case study corridor. The
case study corridor simulated was defined as aminor urban arterial (or possibly amajor urban
collector) for both the four-lane undivided and the three-lane cross section. In the 1994 HCM,
this type of roadway could be classified as either an Arterial ClasslIl or 1V (i.e., an intermediate
or urban design category). The measures of effectiveness that define the LOS for both these

arterial classes and asignalized intersection are listed in Table 10.
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Table10 Arterial and Intersection Level of Service (LOS) Guidelines (19)*

Level of | Arterial ClasslIl Average | Arterial Class|V Average | Avg. Intersection Stopped
Service | Travel Speed (mph) Travel Speed (mph) Delay per Vehicle (sec)

A >30 >25 <50

B =24 >19 5.1t015.0

Cc >18 =13 15.1t025.0

D >14 >9 25.1t040.0

E =10 =7 40.1 to 60.0

F <10 <7 > 60.0

*LOS and arterial classes as defined in the 1994 HCM, Chapters 9 and 11. Four-lane undivided to three-lane
Cross section conversion corridors are usualy classified as Arterial Class |1l or IV.

As previoudly discussed, the difference in simulated average arterial travel speeds for the four-
lane undivided and three-lane cross sections was always less than 4 mph. The range of LOS
speeds for the Arterial Classes Il and IV, however, are typically 2 to 6 mph (see Table 10). For
this reason, the difference in the simulated average arterial travel speeds for afour-lane
undivided and three-lane cross section (and a given set of sensitivity andysis factors) did not
typically result in adifferent arterial LOS. In fact, assuming that the corridor ssmulated was an
Arterial Class 11 (see Table 10), both the four-lane undivided and three-lane roadways had an
arterial LOS C for al the volume and access densty combinations considered except atotal
entering volume of 1000 vphpd. At 1000 vphpd, the four-lane undivided roadways had an arterial
LOS C, and the three-lane cross section experienced an arterid LOS D. In other words, the
difference between the four-lane undivided and three-lane average arterial travel speeds was large
enough (although still less then 4 mph) to produce achangein LOS. LOS C istypically
considered adequate for urban roadway operations, and LOS D is often considered acceptable,
especialy in large urban areas. The feasibility of afour-lane undivided to three-lane conversion
would require an acceptable final magnitude and change in LOS, average arterial travel speed,
and signalized intersection delay. What level of change is acceptable should be locally
determined.

The arterial LOS results are somewhat different if the ssmulated corridor was assumed to be an
Arterial Class IV roadway (see Table 10). In this case, the LOS experienced by the two cross

sections (i.e., four-lane undivided and three-lane) was different for smaller values of the
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sensitivity analysis factors considered. The four-lane undivided simulations, when classified as
an Arterial Class |V (see Table 10), produced an arterial LOS B for al total entering volumes
with access point densities less than or equal to 20 ppm. For greater access point densities, an
arterial LOS B is still generally produced by the four-lane undivided simulations, except at 1,000
vphpd (which has LOS C). The smulated three-lane roadways, on the other hand, were at LOS C
for total entering volumes of 875 vphpd (at access densities at or above 20 ppm) and 1000 vphpd
(al access densities). In other words, the three-lane roadways had alower simulated LOS than
the four-lane undivided roadways for 1000 vphpd and access point densities less than 30 ppm,
and for 875 vphpd and access densities greater than or equal to 20 ppm. For all other
combinations, the LOS of both cross sections was either LOS B or LOS C. Therefore, the cross

sections primarily had the same LOS, except for a small number of input variable combinations.

Average intersection stop delay was also used to determine the LOS at the signalized
intersections aong the simulated corridor. The relationship between the amount of
measured/simulated stop delay per vehicle and the intersection LOS (as per the 1994 HCM) is
shown in Table 10. Recall that during the sensitivity analysis the timing of both signalized
intersections was optimized as part of atwo-phase two-signal system. The objective of this
optimization was to minimize the impact of the sgnals along the simulated corridor by
minimizing the stop delay experienced by vehicles. Overall, it was determined that the signalized
intersections in the ssimulations operated at LOS B for all sensitivity analysis factor combinations.
This LOS is more than adequate for a signalized intersection in an urban area, and the lack of
impact these signals had on the overal arterial LOS (which ranged from B to D) illustrates the

importance of proper signal phasing/timing to account for the any proposed cross section change.
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FEASIBILITY DETERMINATION FACTORS

A number of factors need to be evaluated to determine the feasibility of converting an urban four-
lane undivided roadway to athree-lane cross section. The feasibility of thistype of conversion at
a particular location should be defined by whether the three-lane cross section can be expected to
maintain and/or improve traffic flow conditions and safety along the roadway corridor. If an
evaluation of the factors discussed in this chapter indicates that afour-lane to three-lane
conversion might be feasible, this conversion option should be included in the detailed
comparison and analysis of al the feasible alternative improvements at the location of interest.
The following feasibility determination factors were identified from past research, engineering

judgment, case study results, and the sensitivity analysis previously discussed:

» Roadway Function and Environment
o Oveall Traffic Volume and Level of Service
e Turn Volumes and Patterns
» Frequent-Stop and/or Slow-Moving Vehicles
« Weaving, Speed, and Queues
o Crash Types and Patterns
» Pedestrian and Bike Activity
« Right-of-Way Availability, Cost, and Acquisition Impacts
o Genera Characteristics: Parallel Roadways, Offset Minor Street Intersections, Parallel
Parking, Corner Radii, and At-Grade Railroad Crossings

The design period characteristics of these factors should be investigated to determine the
feasibility of afour-lane undivided to three-lane cross section conversion. The influence each
factor has on the feasibility decision should be based on how well the design period
characteristics of the factor match the goals and objectives of the jurisdiction for the roadway and
whether the changes expected in the factor (due to the conversion) are acceptable. Undoubtedly,
there will be other important factors that must be considered at a particular location. These

factors should be incorporated in to the feasibility determination process.
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The following paragraphs contain a discussion of the factors listed. In particular, the relevant
characteristics of each factor are identified, and the changes they may experience due to afour-
lane undivided to three-lane conversion described. The results of the case studies and sensitivity
analysis described in the previous chapters are incorporated in to the discussion of the magnitude
and characteristics of the overal traffic volume and LOS, and the turning volume and pattern
factors.

Roadway Function and Environment

The function of aroadway is generally defined by the amount of vehicular access and mobility
activity it experiences and/or provides. Arterial roadways are expected to primarily serve a
mobility function, local roadways an access function, and collector roadways a mixture of the
two. The conversion of an urban four-lane undivided roadway to athree-lane cross section will
impact the access and mobility characteristics of that corridor. In general, it will impact the

overall environment of the roadway corridor.

The intended function of most four-lane undivided roadways was the movement or mobility of
through traffic. Traffic turning into minor roadways or driveways was typically a secondary
consideration. Roadways with athree-lane cross section, on the other hand, have aTWLTL for
left-turning traffic and serve less of a mobility function. Roadways with either cross section often
serve arange of access and mobility, and are typically (but not always) labeled as minor arterias
or major collectors. In addition, land uses along these types of roadways can vary from residential
to established commercial. Concerns related to safety and traffic flow aong these roadways
typically occur when the actual function of aroadway (e.g., minor arterial or magjor collector)
does not match its intended or designed function (e.g., mgor arterial). The overall environment
of the roadway corridor should also match the objectives of the public that uses the area (e.g.,

vehicle drivers, pedestrians, bicyclists, and residents).

The objective of any design isto match the mobility and access served (i.e., the roadway
environment) with the actual roadway function (i.e., the access and mobility demands). For
example, an urban four-lane undivided roadway with arelatively small amount of access/turning

activity may efficiently and safely serve (and many do) its mgor/minor arteria function. In many
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cases, however, the turning volumes and/or patterns along these roadways have increased to such
an extent that the four-lane undivided cross section is actually operating as a defacto three-lane
roadway (i.e., most of the through flow isin the outside lane, and the inside lane is used almost
exclusively by turning traffic), particularly at signalized intersections. Figure 4 is an example of a
roadway segment and intersection along an urban four-lane undivided cross section operating in a
three-lane mode. The expected safety and operational impacts of thistype of functional mismatch
are described in the following paragraphs.

The existing and intended function of the candidate roadway must be addressed and understood
to determine the feasibility of afour-lane undivided to three-lane cross section conversion. The
feasibility of this type of conversion, however, is more likely if the existing urban four-lane
undivided cross section is already operating as adefacto three-lane roadway. The expected
tradeoff between mobility and access must also be evaluated with respect to the intended
objective for the roadway corridor.

Figure4 Four-lane Undivided Roadway/I nter section Operating asa “ Defacto” Three-Lane
Cross Section
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Overall Traffic Volume and Level of Service

In the past, one argument to widen a two-lane undivided roadway to a four-lane undivided
roadway was that this type of cross section improvement would serve more through traffic and
allow it to bypass turning traffic. Many urban four-lane undivided roadways operate both
efficiently and safely in this manner. In other cases, the safety and operations of these roadways
have degraded with increased through and turning volumes. The expected design period traffic
flow capabilities of afour-lane undivided and a three-lane cross section need to be compared in
the feasibility determination decision process. Measures for this comparison include the
magnitude of existing and forecast ADT and the peak-hour volumes the cross sections appear to
be capable of adequately serving.

A general knowledge of existing and expected ADT and peak-hour volumes is needed before a
four-lane undivided to three-lane conversion can be recommended as a feasible improvement
aternative. The ADT and peak-hour volume characteristics of the successful case study
conversions described in the chapter “Four-Lane Undivided and Three-Lane Roadway Traffic
Flow Simulation” provide some guidance. These urban roadway case studies had an ADT
between 8,500 and 24,000 vpd (see Table 4), and according to the American Association of State
Highway Transportation Officials (AASHTO) the peak-hour volumes along this type of roadway
typically represent 8 to 12 percent of their ADT (20). For an ADT of 8,500 to 24,000 vpd these
percentages represent a bi-directional peak-hour volume of 680 to 2,880 vehicles. The sensitivity
analysis described in the previous chapter considered peak-hour volumes that encompass all but
the smallest and largest volumesin this range.

The operational feasibility of afour-lane undivided to three-lane conversion also requires an
understanding of how the peak-hour volumes of aroadway are expected to change within the
design period. The sensitivity analysis results described in the previous chapter provided some
guidance on thisissue by comparing the average arterial travel speed, arterial LOS, and
intersection LOS of similar four-lane undivided and three-lane roadways with peak-hour volumes
of 500, 750, 875, and 1,000 vphpd. The analysis found that the minimum difference in average

arterial travel speed for the two cross sections occurred with a peak-hour volume of 750 vphpd.
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However, the simulated differences between the average arteria travel speeds were dways less
then four mph, and the arterial LOS was generally the same for each cross section except when
875 and/or 1,000 vphpd (depending an the arterial classification assumed) were simulated. In
these cases, the arterial LOS for the three-lane cross section was often one LOS lower than that
of the four-lane undivided simulations with similar input factors. The signal timing was
optimized before each simulation, and when this approach was used it was found that the LOS
for these intersections did not change for the input factors considered. In general, however, some
reduction in average arterial travel speed should also be expected, whatever the volume, when a

roadway is converted from afour-lane undivided to athree-lane cross section.

The results of past research, the cases studies, and the simulation sensitivity analysis described in
the previous chapters appear to support the following conversion feasibility suggestions regarding
ADT. Four-lane undivided to three-lane conversions should be expected to be more operationally
feasibleif the directional peak-hour volumes of the roadway remain are at or below 750 vphpd but
should be considered more cautioudy for volumes between 750 and 875 vphpd. Findly, thistype
of conversion should be expected to reduce arterid L OS when volumes are at or above 875 to
1,000 vphpd. At these volumes, at least in lowa, the feasibility of thistype of conversion should
be questioned. If it is assumed that these peak-hour volumes represent 50 percent of the total bi-
directiona traffic and 10 percent of the daily traffic, they would be equivalent to ADT values of
15,000, 17,500, and 20,000 vpd, respectively. In addition to these recommendations, past research
by Hummer and Lewis showed that they believe three-lane cross sections (for the corridors they
evaluated) experience operational capacity at about 12,000 vpd (or 600 vphpd) dueto vehicle
platooning rather than areduction to an arterial segment LOS E (5).

The details of the sensitivity analysis are described in the previous chapter, and the peak-
hour/ADT recommendations above should only be used to generally identify the possible
feasibility of afour-lane undivided to three-lane conversion. A more detailed operationa analysis
of a specific corridor would be necessary, once a four-lane undivided to three-lane cross section
conversion was considered feasible, to compare its expected impacts to other potential roadway
improvements. In addition, the operational success of a four-lane undivided to three-lane

conversion is aso usually measured by a comparison of how well the two cross sections serve the
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overall actual and intended function of the roadway (see the previous discussion), and whether
the safety and/or operational changes expected or experienced due to the conversion are locally
acceptable. For example, a conversion could be considered successful (i.e., feasible) if the LOS
or delay along aroadway was maintained or at least above an acceptable level, but its safety

improved.

In some cases, because of the magnitude of the volumes, the operational feasibility of afour-lane
undivided to three-lane cross section conversion may also appear to require an increase from one
to two through lanes at the signalized intersections along the corridor under consideration. This
increase in lanesis typically suggested for capacity reasons on roadways with significant daily
volumes (e.g., 20,000 vpd or higher) and to maintain the LOS provided at the intersections. It is
the author’ s opinion, with support from past research and the simulation sensitivity analysis, that
the feasibility of afour-lane undivided to three-lane conversion should be questioned if the need
for an additional through lane at one or more intersections along the corridor is required for
acceptability. The lane transition areas introduced to the driver before and after each of these lane
increases may produce unwanted safety and operational consequences (e.g., lane changing and/or
high-speed right-lane passing within the functional area of an intersection). In these cases, a

three-lane cross section may not be feasible or the most appropriate improvement alternative.

Turn Volumes and Patterns

The volume and pattern (i.e., how many, when, and where movements occur) of turn vehicles
impact the operation and safety of all roadways. The feasibility of converting afour-lane
undivided roadway to athree-lane cross section requires an estimate (e.g., Simulation and LOS
analysis) of how current and forecast (i.e., design period) turn volumes are served by both cross
sections. It will be the expected changein LOS or operations (and safety) that determines the
feasibility of afour-laneto three-lane conversion. For example, it is expected that there would be
little change in the operation of afour-lane undivided roadway that operates as a defacto three-
lane cross section during the peak-hour due to the magnitude and/or frequency of its left-turn
volumes (see Figure 2). Thistype of situation, if expected during the entire design period, would
be more likely to define afeasible four-lane undivided to three-lane cross section conversion

location.
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The sensitivity analysis discussed in the previous chapter compared (for one corridor) the average
arterial travel speed and LOS for afour-lane undivided and three-lane roadway with a range of
access point left-turn volumes and densities (along with arange of total entering volumes). The
analysis results indicate that, given optimized signal timing, the difference between the average
arterial travel speedsfor the two cross sections considered decreases as access point |eft-turn
volumes increase (from 10 to 30 percent). A similar pattern is also observed as access point
density increases (from 10 to 50 ppm). The arterial levels of service for the two cross sections, on
the other hand, were only found to be different at the highest access point left-turn volume and
density considered in the simulation. These results are not surprising and are an indication of

how the two cross sections begin to operate in a similar manner as volumes and access point

density increase.

The results of the sensitivity analysis also show several patterns for the corridor geometry (e.g.,
non-offset intersections), volumes (e.g., total entering and access point left-turn), and access
point densities (e.g., greater than zero per mile) considered. For example, the largest difference
between average arterial travel speeds, for the four-lane divided and three-lane cross section
roadways that were simulated, occurred when access point density was 20 ppm. However, the
overall range of average arterial travel speed differencesfor all the access point densities
considered was only 0.6 mph. This difference increased dlightly between 10 and 20 ppm, and
then slowly decreased from 20 to 50 ppm. In general, average arterial travel speeds also
decreased as access point |eft-turn volumes increased a ong the four-lane undivided roadways,
but increased along the three-lane roadways. The simulations with the largest total entering
volume, however, showed areversein this trend for the four-lane roadways (i.e., average through

vehicle arterial travel speeds actudly increased with access point left-turn volume).

It is speculated that a four-lane undivided cross section begins to operate in a more stable manner
(i.e., only through vehiclesin the right-lane and left-turn vehicles in the left-lane) and more like a
three-lane roadway with combinations of large total entering traffic, left-turn volumes, and access
point densities. The three mph difference (see Table 7 and 8) that was found to remain between

the four-lane undivided and three-lane cross section average arterial travel speeds simulated for
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this combination of input will require additional investigation. In addition, the impact of offset
access points and/or intersections on the simulation results are also of interest, and could change
and/or reduce the entering traffic, left-turn access point volume, and access point density at

which the operation of four-lane undivided and three-lane cross sections become more similar.

Frequent-Stop and/or Slow-Moving Vehicles

The amount of frequent-stop and/or slow-moving traffic (e.g., agricultural vehicles, school bus
student drop-off/pick-up, mail delivery vehicles, and buggies) that occurs along aroadway being
considered for a cross section conversion should also be considered. It should be expected that
these types of vehicles would have a greater impact on the operation of a three-lane roadway than
aroadway with afour-lane undivided cross section. The primary reason for the increased impact
of frequent-stop and/or slow-moving vehicles along three-lane roadways results from the
inability of passenger carsto legally pass these vehicles. Thistype of situation would not occur
along aroadway with afour-lane undivided cross section. The feasibility of afour-lane undivided
to three-lane cross section may be questionable if there are alarge number of frequent-stop
and/or slow-moving vehicles in the traffic stream (existing or expected) and/or these vehicles use
the roadway during peak travel periods. The overall impact of these vehicles should be
considered in the evaluation process of the resultant disadvantages and advantages from afour-
lane undivided to three-lane conversion at a particular location. One potential mitigation measure
to minimize the impact of frequent-stop vehiclesisto provide a pull-out areafor the vehicle(s) at
specific locations aong the corridor.

The number and type of frequent-stop and/or slow-moving vehicles (often heavy and long) that
enter and exit the corridor should aso be considered in the feasibility determination of an urban
four-lane undivided to three-lane conversion. These vehicles can have a more of an impact on the
traffic flow along athree-lane cross section than a four-lane undivided roadway. Some types of
frequent-stop and/or slow-moving vehicles entering/exiting an access point or intersection must
be properly served to have the smallest impact on traffic flow. Therefore, improvements may be
necessary to corner and driveway radii and the need for these should be considered in the
feasibility determination of afour-lane undivided to three-lane cross section conversion. This

consideration is especialy important if the frequent-stop and/or slow-moving vehicles are
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expected to be significant and create traffic flow conflict and/or safety concerns. The physical
ability of these vehicles (due to their length) to turn left and enter the corridor from an access
point or unsignalized intersection won't typically be impacted much more than a passenger car,
but this movement must be closely considered at signalized intersections. The intersection
approach/departure geometry and lane marking need to provide long slow-moving vehicles the

capability of turning left from a cross street to the corridor being considered for conversion.

Weaving, Speed, and Queues

The weaving, speed, and queuing of vehicles on afour-lane undivided roadway can be different
from those on athree-lane roadway. Like some of previoudly discussed factors, however, the
difference (especially for speed and queuing) is dependent upon the current operation of the four-
lane undivided roadway. In other words, the impacts should be expected to be small if afour-lane

undivided roadway is aready operating as a defacto three-lane roadway.

Weaving or lane changing (other than vehicles entering the TWLTL) should not occur along a
three-lane roadway. However, there is always the possibility of vehiclesincorrectly usng the
TWLTL or bypassing right-turn vehicles on the left (completely removing the four-lane
undivided markings, and properly marking the three-lane cross section is essential). Fortunately,
neither of these maneuvers has been noted as a significant concern at the case study locations, but
education and/or enforcement of proper TWLTL use may be necessary if thisis not the case.
Lane changing along four-lane undivided roadways, on the other hand, is done for lane
positioning purposes and to bypass turn vehicles. The ability to make these maneuvers decreases
as volumes increase, however, and it can have safety impacts (discussed later in these
guidelines).

The need to “calm” or reduce vehicle speedsis often cited as areason to convert afour-lane
undivided roadway to athree-lane cross section. The case study results show that average vehicle
speed and speed variability (i.e., the number of speeding vehicles) usually decrease when an
urban four-lane undivided roadway is converted to a three-lane cross section. Anecdotal
observations revea that the inability to change lanes or pass along a three-lane roadway resultsin

lower vehicle speed variability (i.e., amore“calm” or less “aggressive’ traffic flow) than along a
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four-lane undivided roadway. Overall, there were usually reductions of three to five mph in the
85th percentile or average speed after the conversion. The sensitivity analysis output (see the
previous chapter) has supported the case study results, and showed that the vehicle speed
differences they experienced (i.e., three to five mph) are possible for alarge range of total

entering traffic, access point |eft-turn volumes, and access point densities.

The conversion of afour-lane undivided roadway to athree-lane cross section includes geometric
changes that can have different impacts on through vehicle delay and queues. The through
vehicle delay related to left-turn traffic can be expected to decrease, but the reduction in through
lanes may result in alarger increase of peak-hour segment and/or intersection through vehicle
delay. The decrease in vehicle speed discussed in the previous paragraph (and in the earlier
section on sensitivity analysis) is based on the difference between the overall four-lane undivided
and three-lane cross section vehicle delays. This difference in delays and queues can be
minimized by, among other things, optimizing and coordinating signals, adding right-turn lanes
where necessary, and redesigning driveway and intersection curb radii. In fact, some or all of
these improvements are almost always necessary, and the case study and sensitivity anaysis
observations and/or results support this conclusion. Of course, the smallest differencein
delay/queues can be expected when the converted four-lane undivided roadway was aready
operating like athree-lane cross section (see Figure 2). Delay that results from the traffic calming
impacts of thistype of conversion (i.e., the fact that the slowest vehicle controls the general
speed of the vehicles on a particular ssgment) can be simulated (see previous chapter), but not

controlled. Thistype of delay is unavoidable inafour-lane undivided to three-lane conversion.

One concern along high-volume roadways after four-lane undivided to three-lane cross section
conversions has been the delay and gap availability that may result at unsignalized intersections
and access points/driveways. If afour-lane undivided roadway is not currently operating like a
three-lane cross section, the minor street or private driveway traffic delay can increase due to the
conversion. Thisincrease can be the result of a potential decrease in the number of acceptable
gaps within the traffic flow (due to a general reduction in through lanes). Minor street delay was
not ameasure of effectiveness considered in this research, but it must be considered to determine

the feasibility of afour-lane undivided to three-lane cross section conversion. In most cases, the
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concern about increased minor street/driveway delay has been tempered by the improved safety
that results from areduction in the complexity of unsignalized intersection turning and crossing
maneuvers. Therefore, some operational efficiency may need to be traded for an expected
increase in safety, but if the expected delay is considered excessive, additional traffic control may

be necessary or the conversion may not be feasible.

Crash Type and Patterns

Based on past research and case study results, it is expected that aroadway with athree-lane
cross section will have alower crash rate than afour-lane undivided roadway. In fact, data from
Minnesotaindicate that three-lane roadways have a crash rate 27 percent lower than the rate for
four-lane undivided roadways (18). The case study results also showed similar or higher crash
rate decreases, and were confirmed by Hummer’ s research and a paper by Huang et a. (5, 15).
Huang et a. found that the monthly crash frequency decreased 2 to 42 percent after conversion
from afour-lane undivided to three-lane cross section, and that this was significantly more than
comparable sites that were not changed (15). Crash severity was a so decreased, but the changes
in crash type (between adjusted and comparable non-adjusted sites) were found to be similar
(15). Related research has shown that that the addition of a TWLTL can be expected to decrease
crash rates by 10 to 40 percent (1, 2, 7).

The expected increase in safety that results from afour-lane undivided to three-lane cross section
conversion may primarily be the result of areduction in speed and speed variability aong the
roadway, a decrease in the number of conflict points between vehicles, and improved sight
distance for the mgjor-street |eft-turn vehicles. A three-lane cross section removes | eft-turn
vehicles from the through lane. The addition of a TWLTL, therefore, reduces the conflicts
between these stopped vehicles and through traffic, and also any related lane changing conflicts
that may result. The number of lanes that need to be crossed by major-street left-turn and minor
street crossing vehiclesis adso decreased (see Figures 5 and 6). The reduction in speed variability

and conflict points can decrease rear-end, sideswipe, and/or angle crashes related to left-turn and
crossing vehicles on three-lane roadways. The major-street |eft-turn vehicle sight distance

improvements that result from afour-lane undivided to three-lane cross section conversion are
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shown in Figure 7. These improvements are al so expected to improve the safety of the corridor. It
is speculated that the only increase in crashes that might be experienced when an urban four-lane
undivided roadway is converted to athree-lane cross section would be due to the increase in
right-turn and through vehicle stop/slow conflicts, and a general increasein overall congestion
(e.g., increased volumes, intersection/segment delay, and queues). In the case studies, however, it
would appear that this potential increase in crashes was far outweighed by the overall reduction
in crashes.

The reduction in conflict points also decreases the complexity of left-turn and crossing
maneuvers. This type of operation is safer for all drivers but is especidly preferable for areas
with large a population of older drivers. As previously discussed, however, this decreasein
complexity may be offset on high-volume roadways with an increase in delay for minor street

approach and private driveway traffic (due to a decrease in acceptable major-street vehicle gaps).

Pedestrian and Bike Activity

The conversion of an urban four-lane undivided roadway to athree-lane cross section may have
an impact on pedestrian and bike activity. These users (pedestrians and bicyclists) are not usually
served well by urban four-lane undivided roadways. In fact, the case study results appear to
support the conclusion that pedestrians, bicyclists, and adjacent landownerstypicaly prefer the
corridor environment of athree-lane cross section rather to afour-lane undivided roadway. The

somewhat slower and more consistent speeds produced are more desirable to al three groups.

The safety of pedestrians and bicyclists is an important factor to consider. A three-lane cross
section produces fewer conflict points between vehicles and crossing pedestrians. In addition,
although the total roadway width does not change, the complexity of the pedestrian crossing
maneuver is reduced. For example, pedestrians have two though lanes to cross rather than four,
and they aso sometimes use the TWLTL to cross the entire roadway width in two movements.
While this two-stage pedestrian crossing movement is not recommended, it is most likely safer
than a pedestrian making the same maneuver across afour-lane undivided roadway. The
conversion from four to three lanes may also allow the use of wider lanes or designated bike

lanes to better accommodate bicyclists. Figure 8is a photo of athree-lane roadway with bike
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lanesin Ames, lowa. In general, the conversion of an urban four-lane undivided roadway to a
three-lane cross section can be expected to benefit both pedestrians and bicyclists, and improve

the overall roadway environment.

Figure8 Three-Lane Cross Section with Bike Lanes

Right-of-Way Availability, Cost, and Acquisition I mpacts

Many urban four-lane undivided roadways are located in areas that have alimited amount of
additional right-of-way land available. If aroadway in this environment is widened (through the
addition of aTWLTL or raised median) the cost and acquisition impacts could be significant.
Typically the conversion of afour-lane undivided roadway to a three-lane cross section does not
require any significant amount of additional right-of-way or the removal of trees and buildings.
The existing curb-to-curb width, for example, is simply reallocated from four through lanes to
two through lanesand aTWLTL. However, additional land for driveway and/or intersection radii
reconstruction may be necessary to more adequately serve traffic. These improvements are
normally rehabilitative in nature and only done where needed. In addition, right-turn lanes may
also be necessary at some high-volume locations, but given the curb-to-curb width this addition
may only require the removal of some parallel parking spaces. A three-lane cross section,
therefore, is more feasible than widening aong urban roadways with highly  restricted right-of-
way availability. Both the right-of-way impacts and costs are significantly less than widening a
roadway for aTWLTL or raised median.
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General Characteristics: Parallel Roadways, Offset Minor Street | nter sections, Parallel
Parking, Corner Radii, and At-Grade Railroad Crossings

Parallel Roadways

The structure of the surrounding roadway system should also be considered to determine the
feasibility of afour-lane undivided to three-lane cross section conversion. For example, the
impact of a conversion on parallel roadway traffic flow must be evaluated. As previously
discussed, areduction in speed and some decrease in LOS may occur with the conversion of an
urban four-lane undivided roadway to athree-lane cross section. This decrease in mobility may
induce some drivers to choose a different route. Parallel roadways in close proximity to the
converted corridor are candidates for this alternative route, and may experience increased traffic
volumes if they offer an acceptable (in terms of travel time, etc.) dternative. Therefore, if
roadways parallel to the converted corridor exist, the operational impacts or changes due to the
conversion must be minimized and kept to an acceptable amount. A shift in traffic flow was not
experienced by most of the case studies reviewed, but volumes along any parallel streets should
be closely monitored after a conversion and the speed limits along these roadways enforced if

necessary.

Offset Minor Street Inter sections

Minor street offset intersections are considered a poor design characteristic of any roadway. The
existence of “high-volume” offset minor streets or driveways must be considered to determine
the feasibility of afour-lane undivided to three-lane cross section conversion. Heavily used offset
minor streets or driveways can produce a situation with overlapping turn volumes within the
inside through lanes and/or the TWLTL. For the three-lane cross section, this overlap can result
in vehicles that slow and possibly stop within the through lanes. Therefore, it isimportant to
understand and/or estimate the through volumes and turn volumes into the minor streets and
driveways along the corridor being considered for conversion. This type of operation is difficult
to ssimulate, but knowledge of its occurrence is especially relevant if the overlapping turn
volumes are consistently large (i.e., the two turn volumes are high and occur at the same time)
and are expected to impact through vehicle operation along a three-lane roadway. In most cases,

the existence of aTWLTL would be expected to improve the operations and safety of a roadway

62



with offset minor streets or driveways, but the possibility of the issue discussed in this paragraph
must be investigated.

Parallel Parking, Corner Radii, and At-Grade Railroad Crossings

In addition to the roadway characteristics described in the previous two paragraphs, the amount
and usage of the parallel parking spaces along the corridor, the length of each corner radii, and
the impact of any at-grade railroad crossings should be reviewed. Parallel parking along
roadways that serve amobility purpose are not usually recommended. Not unexpectedly,
however, some cities still have parallel parking spaces along four-lane undivided roadways and
would like to continue to have them with the three-lane cross section. One parallel parking
striping design (used in Sioux Center, lowa) that appears to minimize the impact of parking
usage on the through lanes of athree-lane cross section includes pairs of parking spaces that are
spaced to allow parking movements to occur quickly. Thistypeof design, however, will reduce
the number of parking spaces available. Caution should be also exercised if a bike lane must be
included in across section that includes parallel parking. In this case, the bike laneis placed
between the through and parking lane. This design has been used in the past, but it must take into

account the conflict between parking vehicles and bicyclists that may occur.

As previoudly discussed, the corner radii of intersections and drivewaysis aso an important
factor to consider in the determination of afour-lane undivided to three-lane cross section
conversion. Radii geometry and/or corner design impacts the ability and speed of vehicle
entering/exiting the minor cross street or driveway. These types of improvements should be done
on an as-needed basis. They may not be necessary along an entire corridor and/or only required at
specific intersections. The existing corner radii along the four-lane undivided roadway under
consideration should be evaluated for their expected traffic flow impacts along the proposed
three-lane cross section. In some cases, parallel parking spaces near intersectionsmay also need

to be eliminated for the addition of aright-turn lane (if necessary).

The impact of at-grade railroad crossings should aso be considered and evaluated when
determining the feasibility of converting a four-lane undivided roadway to athree-lane cross

section. In most cases, the queues at arailroad crossing can be expected to approximately double
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when aroadway is converted to athree-lane cross section. Drivers on afour-lane undivided
roadway that approach arailroad crossing occupied by atrain will typically choose the lane with
the shortest queue (i.e., use both lanes evenly). The three-lane cross section does not provide this
option. In other words, arailroad crossing along afour-lane undivided roadway, unlike aregular
signalized intersection, will aimost never operate as a defacto three-lane cross section (see Figure
4). The acceptability of double the typical at-grade railroad crossing queues (along with the
associated vehicle delay) must be considered closely when determining the feasibility of afour-

lane undivided to three-lane cross section conversion.

Summary of Findings

The design period characteristics of certain feasibility determination factors (e.g., those discussed
in this chapter) should be investigated before the conversion of an urban four-lane undivided
roadway to athree-lane cross section. The ability to estimate the magnitudes of these factors for
both cross sections (during the design period), and their expected changes, is essential to the
determination of conversion feasibility and its impacts. The factors discussed in these guidelines
included roadway function and environment; overall traffic volumes and level of service; turning
volumes and patterns; frequent-stop and/or slow-moving vehicles; weaving, speed, and queues;
crash type and patterns; pedestrian and bike activity; right-of-way availability, cost, and
acquisition impacts; and some other general characteristics. The existing and forecast
characteristics of all these factors should be reviewed to determine the feasibility and possible
success of converting a four-lane undivided roadway to athree-lane cross section. In general, a
four-lane undivided to three-lane conversion should be considered feasible if the goals and
objectives for the corridor are matched by the expected three-lane cross section characteristics
(i.e., the factors discussed in this chapter) in an acceptable manner. A detailed engineering study
would then be necessary to quantify and compare the impacts of this aternative to the others that

are feasible along the corridor of interest.

Thelist of factors discussed in these guidelines should not be considered exhaustive for every
corridor. Other relevant factors may be identified for a particular location that is being considered

for a conversion. These additional factors must be considered in conjunction with those listed

64



and discussed in these guidelines. These guidelines should, however, provide a good starting

point for the feasibility determination of four-lane to three-lane conversions.
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CONCLUSIONSAND RECOMMENDATIONS

Conclusions

The following conclusions are based on the findings past research, and the results of case study

and simulation analysis investigations completed as part of this project.

Most cross section improvement research has focused on the advantages and disadvantages
of the addition of araised median or TWLTL to acurrently undivided roadway.

The addition of a TWLTL or raised median to an undivided roadway typically reduces through-
vehicle delay.

The addition of aTWLTL or raised median to an undivided roadway typicdly reduces crash
rates.

In certain circumstances, the conversion of afour-lane undivided roadway to athree-lane cross
section can be afeasible improvement alternative, but not necessarily the preferable aternative,

at aparticular location.

Typically, areduction of less than five mph has been observed and/or smulated in average
arteria or 85th percentile speed after afour-lane undivided to three-lane cross section
conversion. The magnitude of the change depends upon the current operation of the four-lane
undivided roadway and a number of other factors (e.g., total volume, turn volume, access

density, and signal timing changes).

Measurements in the field show that several case study conversions resulted in areduction of
the number of driverstraveling five mph or more above the posted speed limit. These
reductions can be significant (e.g., for two case studies it was measured between 60 to 70
percent). This reduction in speeders is ameasure of the “traffic calming” effect produced by a

four-lane undivided to three-lane cross section conversion.
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Some four-lane undivided roadways currently operate as “ defacto” three-lane roadways
(especialy during the peak period).

The total number of crashesistypically reduced (from 17 to 62 percent for the case studies

identified) when afour-lane undivided roadway is converted to athree-lane cross section.

Four-lane undivided roadways with an ADT between 8,400 and 24,000 vpd, and areatively
wide range of traffic flow and physical characteristics, have been successfully converted to

three-lane cross sections in many areas of the United States and lowa.

The results of the smulation sensitivity analysis completed as part of this project support the
conclusion four-lane undivided to three-lane cross section conversions, when done properly

and in the correct location, can have minimal operational disadvantages.

The smulation sensitivity analysis completed as part of this project helped identify the average
arteria travel speed and LOS impacts (i.e., operational feasibility) of afour -lane undivided to
three-lane conversion along aroadway with different total entering volumes, left-turn volumes,

and access densities.

The three-lane cross section can eadly beincorporated as a potentidly feasible aternativein to

the cross section selection guidelines suggested in past research.

The life-cycle costs and benefits, increased delay and decreased crashes, of afour-lane
undivided to three-lane cross section conversion should be compared to the impacts from

typical widening alternatives to determine the preferable improvement.

Recommendations
The following actions are recommended based on the results of this project report and the

discussionsin these guidelines.

« Thefeasibility of replacing an urban four-lane undivided roadway with athree-lane cross

section should be considered on a case-by-case basis.
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At aminimum, the existing and expected characteristics of the following feasibility
determination factors should be investigated when considering the design period feasibility of a

four-lane undivided to three-lane cross section conversion:

Roadway Function and Environment

Overal Traffic Volume and Level of Service

Turn Volumes and Patterns

Frequent-Stop and/or Slow-Moving Vehicles

Weaving, Speed, and Queues

Crash Types and Patterns

Pedestrian and Bike Activity

Right-of-Way Availability, Cost, and Acquisition Impacts

General Characteristics: Parallel Roadways, Offset Minor Street Intersections,
Parallel Parking, Corner Radii, and At-Grade Railroad Crossings

YV ¥V ¥V ¥V ¥V Y VYV V V

The content of these guidelines, along with the summary tables in the executive summary and
Appendix C should be used to assist with the investigation of the factors discussed and to

determine the feasibility of afour-lane undivided to three-lane cross section conversion.

From an operational point of view, it is suggested that four-lane undivided to three-lane cross
section conversions be considered as a feasible (with respect to volume only) option when bi-
directional peak-hour volumes up are less than 1,500 vph, but that more caution should be
exercised when the roadway has a bi-directional peak hour volume between 1,500 vph and
1,750 vph. At and above 1,750 vph, the simulation indicated areduction in arterial level of
service. Therefore, at least in lowa, the feasibility of afour-lane undivided to three-lane cross
section conversions should be questioned and/or considered much more closely when a
roadway has (or is expected to have) a peak hour volume above 1,750 vph. Assuming that
these volumes represent 10 percent of the ADT aong corridor, they are equivalent to 15,000
vpd and 17,500 vpd. These recommendations are based on the simulation analysis of an

idealized case study corridor, and the expected operational impacts should be considered and
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investigated on an individual basis if the conversion is considered feasible based on these

general volume suggestions.

A four-lane undivided roadway should not be converted to athree-lane cross section if delays
and/or crash rates are expected to increase dramatically.

A converson of thety pe discussed in these guidelines will be most successful if the factors
that define the roadway environment remain stable during the design period (e.g., traffic
volumes won't increase dramatically) and the current four-lane undivided roadway is aready

operating as a“defacto” three-lane roadway.

More formal, consistent, and widespread before-and-after studies of this type of conversion

should be completed and documented.

If athree-lane cross section is determined to be feasible it should be considered, along with

the other alternatives, within a detailed engineering study for comparison purposes.

Transportation professionals should consider the three-lane cross section as just one more

possible improvement alternative for urban four-lane undivided roadways.

A simulation sensitivity analysis of a corridor with less idealized characteristics should be
completed and the results compared to measurements in the field. For example, offset
intersections should be considered along with less uniformly distributed left-turn volumes

throughout the roadway corridor segment.
A wider range of the parameters considered in this research should also be investigated in a

simulation sensitivity analysis. The limitations of CORSIM may require the use of another
software package to complete this task.
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Evaluate the use of the new software packages that claim to accurately simulate the operation
of aTWLTL. Some of the new software packages may accurately represent the traffic flow

that occurs after afour-lane undivided to three-lane conversion, and may be more adaptable.

The impact of frequent-stop and/or slow-moving vehicle traffic flow on the feasibility of a
four-lane undivided three-lane conversion should be more closdy investigated (through
simulation or other means). Some of this research is ongoing but was not complete before

the publication of these guidelines.
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Appendix A
Sioux Center Resident Survey Results
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Appendix B
Sengitivity Analysis Simulation Results
(Average of Five Simulation Resultsfor Each Combination I ndicated)
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TableB.1 AverageArterial Travel Speedsfor Combinations of Total Volume, Left-Turn
Per centages, and Access Point Density**

AccessPoint | Left TurnVolume | Total |4-LaneAverage|3-Lane Average |AverageArterial
Density (per (total percent of | Volume |Arterial Travel |Arterial Travel |Travel Speed
mile per side) | directional volume) | (vphpd) |Speed (mph)  |Speed (mph) Difference (mph)*
0 0 500 23.2 21.6 -1.5
750 21.8 19.5 -2.3
875 21.9 19.9 -2.1
1000 21.5 17.6 -3.9
10 10 500 22.9 214 -1.4
750 21.3 20.1 -1.2
875 21.6 19.8 -1.9
1000 20.6 17.1 -3.5
20 500 22.8 214 -1.4
750 21.0 20.0 -1.0
875 21.5 19.6 -1.9
1000 20.6 17.3 -34
30 500 22.6 21.8 -0.8
750 21.0 20.1 -0.9
875 21.3 19.5 -1.8
1000 20.3 17.3 -3.0
20 10 500 22.8 21.2 -1.6
750 21.7 19.7 -2.0
875 21.4 18.7 -2.7
1000 20.1 16.9 -3.2
20 500 22.4 21.1 -1.4
750 20.8 19.7 -1.0
875 21.0 18.8 -2.1
1000 20.3 17.1 -3.2
30 500 22.4 21.2 -1.2
750 20.6 19.9 -0.7
875 20.8 18.7 -2.1
1000 19.8 17.1 -2.6
30 10 500 22.0 204 -1.6
750 20.0 19.5 -0.6
875 20.5 18.3 -2.3
1000 18.8 15.4 -3.5
20 500 21.7 20.5 -1.3
750 20.3 19.7 -0.6
875 20.3 18.5 -1.8
1000 19.2 16.0 -3.1
30 500 21.6 20.5 -1.1
750 20.1 19.7 -0.4
875 20.3 18.5 -1.9
1000 19.3 15.9 -34
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TableB.1 Continued

40 10 500 215 19.8 -1.7
750 19.3 19.3 0.0

875 19.8 18.3 -1.5

1000 18.5 14.9 -3.6

20 500 214 20.0 -1.4
750 19.7 19.3 -0.5

875 19.7 18.2 -1.5

1000 18.5 14.7 -3.8

30 500 21.3 20.0 -1.3
750 19.7 19.3 -04

875 19.9 18.3 -1.6

1000 18.7 151 -3.7

50 10 500 215 20.3 -1.2
750 20.0 19.4 -0.6

875 19.7 18.1 -1.7

1000 18.2 16.5 -1.8

20 500 215 20.3 -1.2
750 19.8 19.6 -0.2

875 20.1 184 -1.6

1000 18.7 16.6 -2.1

30 500 214 20.3 -1.1
750 19.9 19.4 -0.5

875 20.1 184 -1.7

1000 19.9 16.4 -3.6

*Difference = Average Simulated Through V ehicle Speed with the Four-Lane Undivided Cross Section - Average
Simulated Through V ehicle Speed with the Three-Lane Undivided Cross Section.

** Any discrepancies in table are due to round-off error; mph = miles per hour; vphpd = vehicles per hour per
direction.
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Appendix C
Feasibility Determination Factor Characteristics and Sample Evaluative Questions
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Table ES.1 Feasibility Deter mination Factor Characteristics and Sample Evaluative Questions

Factor Characteristics Sample Evaluative Questions
Roadway Function and o Actual, Expected, and Desired Primary Function (Access, »  What isthe primary current, expected, and desired
Environment Mobility, or a Combination of the Two) function of the roadway?

Community Objectives/Goals for the Roadway
Available Right-of-Way
Current and Expected Adjacent Land Use

Isthe roadway primarily a collector or minor arterial
roadway?

Does the current roadway primarily operate as a
“defacto” three-lane cross section?

Isthe goal for the roadway improvement increased
safety with somewhat lower mobility?

Isthe right-of-way limited?

Will the adjacent land use remain relatively stable
throughout the design period?

Will the proposed cross section match the desired
function of the roadway?

Will the answers to the above questions remain the same
throughout the design period of the project?

Overall Traffic Volume and
Level of Service

Total Daily Volume

Peak-Hour Volume (Morning/Noon/Evening)
Directional Split

Intersection and Arterial Level of Service

Side Street and Driveway Vehicle Delay

Volume of Frequent-Stop and/or Slow-Moving Vehicles
Signal Timing/Phasing

Arteria Travel Speedsand Vehicle Delays

Existence of Turn Lanes

What is an acceptable increase in minor street or signal -
related delay due to the conversion?
Isadecreasein arterial travel speed of 5 miles per hour
or less acceptable?
What is an acceptable reduction in intersection leve of
service?
What level of daily traffic volume exists (for lowa
roadways and assuming a 50/50 split and 10 percent of
daily volume occurs during peak-hour):

< 15,000 vpd (feasibility probable)

15,000 to 17,500 vpd (exercise caution)

> 17,500 vpd (feasibility lesslikely)
Does the signal timing/phasing need to be changed?
Does the current roadway primarily operate as a
“defacto” three-lane cross section?
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TableES.1 Continued

Turning Volumes and
Patterns

Number and Location of Turn Volumes and Access Points
Peak time period of Turn Volumes

Existence of Left-Turn and Right-Turn Lanes

Design of Access Points and I ntersections

Turn Volume of Frequent-Stop and/or Slow-Moving Vehicles
Minor Street and Access Point Vehicle Delay

Signal Timing/Phasing

Does the signal timing/phasing need to
changes/optimized?

How important isit that right-turn vehicles quickly
enter/exit the roadway?

Do the access point and intersections need to be
redesigned (e.g., radii, approach slopes, location)?
Are right-turn lanes needed at particular locations?
Does the proposed marking allow the design vehicle
(e.g., tractor-trailer) to turn properly?

What is an acceptable increase in minor street and/or
left-turn vehicle delay?

Does the current roadway primarily operate as a
“defacto” three-lane cross section?

Frequent-Stop and/or Slow-
Moving Vehicles (e.g.,
agricultural vehicles, mail
carriers, school buses, tractor-
trailers, and buggies)

Volume, Location, and Time of Frequent-Stop and/or Slow-
Moving Vehicles

Type, Design (Length, Width, Turning Radius, etc.) and Speed
of Vehicles

Arterial Travel Speedsand Vehicle Delays

Level of Enforcement for Proper TWLTL Use (i.e., No Passing
Allowed)

What is acceptable delay with respect to frequent-stop or
slow-moving vehicles?

Can these vehicles turn properly at the access points and
intersections?

Can no passing of these vehicles be enforced?

Arethere locations for pull-outs for these vehicles?

Can some or all of the stop locations for the frequent-
stop vehicles be combined?
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TableES.1 Continued

Weaving, Speed, and Queues

Signal Timing/Phasing

Number of Existing Lane Changes

Turn Volume and Location

Arterial Travel Speedsand Vehicle Delays

Level of Enforcement for Proper TWLTL Use (i.e., No Passing
Allowed)

Number and Location of Turn Volumes and Access Points
Peak Time Period of Turn Volumes

Existence of Left-Turn and Right-Turn Lanes

Design of Access Points and I ntersections

Turn Volume of Frequent-Stop and/or Slow-Moving Vehicles
Minor Street and Access Point Vehicle Delay

Queue Length

Number of Speeders (i.e., greater than 5 mph over the posted
speed limit)

Does the signal timing/phasing need to
changes/optimized?

How important is it that right-turn vehicles quickly
enter/exit the roadway?

Do the access point and intersections need to be
redesigned (e.g., radii, approach slopes, location)?
Are right-turn lanes needed at particular locations?
What is an acceptable increase in minor street and/or
left-turn vehicle delay?

Isadecreasein arterial travel speed of 5 miles per hour
or less acceptable?

What is an acceptable change in queues?

Are there safety concerns related to weaving?

Can no passing be enforced?

Can drivers be educated about proper use of TWLTL?
Isareduction in speeders and speed variability
preferred?

Can al the old markings be completely removed?
Does the current roadway primarily operate as a
“defacto” three-lane cross section?

Crash Types and Patterns

Type of Crashes

Location of Crashes

Number and L ocation of Pedestrians and Bicyclists
Parallel Parking Need

Can the crashes that are occurring be reduced with a
conversion?

Will areduction in speed and speed variability increase
safety?

Are there safety concerns related to parallel parking
maneuvers?

Do pedestrians and bicyclists have safety concerns?

Pedestrian and Bike Activity

Number and Location of Pedestrians

Number and Location of Bicyclist Use

Characteristics of Pedestrians and Bicyclists (e.g., Age)
Bike and Pedestrian Friendliness of Roadway

Cross Section Width

Parallel Parking Need

What is the pedestrian and bicyclist friendliness of the
roadway?

Do pedestrians and bicyclists have safety concerns?
Will the addition of a TWLTL assist pedestrians and
bicyclists?

How will pedestrians and bicyclists interact with parallel
parking?

Can a bike lane be added after the conversion?
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TableES.1 Continued

Right-of-Way Availability,
Cost, and Acquisition Impacts

Available Right-of-Way

Cost of Right-of-Way

Existence of Left-Turn and Right-Turn Lanes

Design of Access Points and I ntersections

Number of Properties Needed and Environmental Impacts (e.g.,
Tree Removal)

Cross Section Width

Parallel Parking Need

Isthe right-of-way limited?

Will the cost of right-of-way acquisition be significant?
Do the access point and intersections need to be
redesigned (e.g., radii, approach slopes, location)?

Are right-turn lanes needed at particular locations?
What is necessary in the cross section (e.g., bike lane,
parallel parking, etc.)?

General Characteristics

Parallel Roadways

Roadway Network Layout
Volume and Characteristics of Through Vehicles Diverted
Impact of Diversion on Parallel Roadways

Isadecreasein arterial travel speed of 5 miles per hour
or less acceptable?

Does the signal timing/phasing need to
changes/optimized?

Will conversion divert through vehicles to parallel
roadways?

Isit possible to avoid or reroute the diverted traffic?
What is the impact on the parallel roadway environment?

Offset Minor Street

Volume and Time of Left Turns

Do left turns occur into both minor street/access point

Intersections Queue Lengths approaches at a similar time?
Distance between Minor Street Approaches Are the left-turn volumes significant?
Will the left-turn volumes produce queues in the through
lanes of a three-lane roadway?
Parallel Parking Parallel Parking Need Does parallel parking exist?

Number of Parking Maneuvers
Operational and Safety | mpacts of Parallel Parking
Design of Existing/Proposed Parallel Parking

How many parking maneuvers occur during peak travel
times?

What are the safety and delay concerns related to parallel
parking maneuvers?

Isit possible to design these spaces for easy enter/exit
(i.e., to minimize delay)?

Will it be necessary to reduce the number of parking
spaces?

Does parallel parking reduce the ability of vehiclesto
turn in and out of minor streets and access points?
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TableES.1 Continued

Corner Radii

At-Grade Railroad
Crossing

Design of Access Points and | ntersections

Number and Location of Turn Volumes and Access Points
Peak time period of Turn Volumes

Existence of Left-Turn and Right-Turn Lanes

Turn Volume of Frequent-Stop and/or Slow-Moving Vehicles
Minor Street and Access Point Vehicle Delay

Volume, Location, and Time of Train Crossing
Length of Crossing Train

Delay Impacts of Train Crossing

Queue Impacts of Train Crossing

Total Daily Vehicle Volume

Peak-Hour Vehicle Volume (Morning/Noon/Evening)
Directional Split of Vehicles

How important is it that right-turn vehicles quickly
enter/exit the roadway?

Do the access point and intersections need to be
redesigned (e.g., radii, approach slopes, location)?

Are right-turn lanes needed at particular locations?
Does the proposed marking allow the design vehicle
(e.g., tractor-trailer) to turn properly?

Do parallel parking spaces need to be removed to allow
proper turning?

Do trains cross during peak travel periods? What is the
typical delay from train crossing?

Is double the current queue length (with four-lane
undivided cross section) at arailroad at-grade crossing
acceptable?

Would the delay impacts of double the current queue be
acceptable?




